Detection, Validation, and Application of Genotyping-by-Sequencing Based Single Nucleotide Polymorphisms in Upland Cotton

Publication Overview
TitleDetection, Validation, and Application of Genotyping-by-Sequencing Based Single Nucleotide Polymorphisms in Upland Cotton
AuthorsIslam MS, Thyssen GN, Jenkins JN, Fang DD
TypeJournal Article
Journal NameThe Plant Genome
Volume8
Issue1
Year2015
Page(s)1-10
CitationIslam MS, Thyssen GN, Jenkins JN, and Fang DD. Detection, Validation, and Application of Genotyping-by-Sequencing Based Single Nucleotide Polymorphisms in Upland Cotton. The Plant Genome. 2015 March; 8(1):1-10.
Publication CodePGM-8-1

Abstract

The presence of two closely related subgenomes in the allotetraploid Upland cotton, combined with a narrow genetic base of the cultivated varieties, has hindered the identification of polymorphic genetic markers and their use in improving this important crop. Genotyping-by-sequencing (GBS) is a rapid way to identify single nucleotide polymorphism (SNP) markers; however, these SNPs may be specific to the sequenced cotton lines. Our objective was to obtain a large set of polymorphic SNPs with broad applicability to the cultivated cotton germplasm. We selected 11 diverse cultivars and their random-mated recombinant inbred progeny for SNP marker development via GBS. Two different GBS methodologies were used by Data2Bio (D2B) and the Institute for Genome Diversity (IGD) to identify 4441 and 1176 polymorphic SNPs with minor allele frequency of ³0.1, respectively. We further filtered the SNPs and aligned their sequences to the diploid Gossypium raimondii reference genome. We were able to use homeologous SNPs to assign 1071 SNP loci to the At subgenome and 1223 to the Dt subgenome. These filtered SNPs were located in genic regions about twice as frequently as expected by chance. We tested 111 of the SNPs in 154 diverse Upland cotton lines, which confirmed the utility of the SNP markers developed in such approach. Not only were the SNPs identified in the 11 cultivars present in the 154 cotton lines, no two cultivars had identical SNP genotypes. We conclude that GBS can be easily used to discover SNPs in Upland cotton, which can be converted to functional genotypic assays for use in breeding and genetic studies.
Features
This publication contains information about 5,839 features:
Feature NameUniquenameType
USDA_CFB2502USDA_CFB2502genetic_marker
USDA_CFB2503USDA_CFB2503genetic_marker
USDA_CFB2504USDA_CFB2504genetic_marker
USDA_CFB2505USDA_CFB2505genetic_marker
USDA_CFB2506USDA_CFB2506genetic_marker
USDA_CFB2507USDA_CFB2507genetic_marker
USDA_CFB2508USDA_CFB2508genetic_marker
USDA_CFB2509USDA_CFB2509genetic_marker
USDA_CFB2510USDA_CFB2510genetic_marker
USDA_CFB2511USDA_CFB2511genetic_marker
USDA_CFB2512USDA_CFB2512genetic_marker
USDA_CFB2513USDA_CFB2513genetic_marker
USDA_CFB2514USDA_CFB2514genetic_marker
USDA_CFB2515USDA_CFB2515genetic_marker
USDA_CFB2516USDA_CFB2516genetic_marker
USDA_CFB2517USDA_CFB2517genetic_marker
USDA_CFB2518USDA_CFB2518genetic_marker
USDA_CFB2519USDA_CFB2519genetic_marker
USDA_CFB2520USDA_CFB2520genetic_marker
USDA_CFB2521USDA_CFB2521genetic_marker
USDA_CFB2522USDA_CFB2522genetic_marker
USDA_CFB2523USDA_CFB2523genetic_marker
USDA_CFB2524USDA_CFB2524genetic_marker
USDA_CFB2525USDA_CFB2525genetic_marker
USDA_CFB2526USDA_CFB2526genetic_marker

Pages

Projects
This publication contains information about 1 projects:
Project NameDescription
USDA_CFB_SNP_genotype
Properties
Additional details for this publication include:
Property NameValue
Start Page1
Journal CodePGM
Publication CodePGM-8-1
DOI10.3835/plantgenome2014.07.0034