Detection, Validation, and Application of Genotyping-by-Sequencing Based Single Nucleotide Polymorphisms in Upland Cotton

Publication Overview
TitleDetection, Validation, and Application of Genotyping-by-Sequencing Based Single Nucleotide Polymorphisms in Upland Cotton
AuthorsIslam MS, Thyssen GN, Jenkins JN, Fang DD
TypeJournal Article
Journal NameThe Plant Genome
Volume8
Issue1
Year2015
Page(s)1-10
CitationIslam MS, Thyssen GN, Jenkins JN, and Fang DD. Detection, Validation, and Application of Genotyping-by-Sequencing Based Single Nucleotide Polymorphisms in Upland Cotton. The Plant Genome. 2015 March; 8(1):1-10.
Publication CodePGM-8-1

Abstract

The presence of two closely related subgenomes in the allotetraploid Upland cotton, combined with a narrow genetic base of the cultivated varieties, has hindered the identification of polymorphic genetic markers and their use in improving this important crop. Genotyping-by-sequencing (GBS) is a rapid way to identify single nucleotide polymorphism (SNP) markers; however, these SNPs may be specific to the sequenced cotton lines. Our objective was to obtain a large set of polymorphic SNPs with broad applicability to the cultivated cotton germplasm. We selected 11 diverse cultivars and their random-mated recombinant inbred progeny for SNP marker development via GBS. Two different GBS methodologies were used by Data2Bio (D2B) and the Institute for Genome Diversity (IGD) to identify 4441 and 1176 polymorphic SNPs with minor allele frequency of ³0.1, respectively. We further filtered the SNPs and aligned their sequences to the diploid Gossypium raimondii reference genome. We were able to use homeologous SNPs to assign 1071 SNP loci to the At subgenome and 1223 to the Dt subgenome. These filtered SNPs were located in genic regions about twice as frequently as expected by chance. We tested 111 of the SNPs in 154 diverse Upland cotton lines, which confirmed the utility of the SNP markers developed in such approach. Not only were the SNPs identified in the 11 cultivars present in the 154 cotton lines, no two cultivars had identical SNP genotypes. We conclude that GBS can be easily used to discover SNPs in Upland cotton, which can be converted to functional genotypic assays for use in breeding and genetic studies.
Features
This publication contains information about 5,839 features:
Feature NameUniquenameType
USDA_CFB3002USDA_CFB3002genetic_marker
USDA_CFB3003USDA_CFB3003genetic_marker
USDA_CFB3004USDA_CFB3004genetic_marker
USDA_CFB3005USDA_CFB3005genetic_marker
USDA_CFB3006USDA_CFB3006genetic_marker
USDA_CFB3007USDA_CFB3007genetic_marker
USDA_CFB3008USDA_CFB3008genetic_marker
USDA_CFB3009USDA_CFB3009genetic_marker
USDA_CFB3010USDA_CFB3010genetic_marker
USDA_CFB3011USDA_CFB3011genetic_marker
USDA_CFB3012USDA_CFB3012genetic_marker
USDA_CFB3013USDA_CFB3013genetic_marker
USDA_CFB3014USDA_CFB3014genetic_marker
USDA_CFB3015USDA_CFB3015genetic_marker
USDA_CFB3016USDA_CFB3016genetic_marker
USDA_CFB3017USDA_CFB3017genetic_marker
USDA_CFB3018USDA_CFB3018genetic_marker
USDA_CFB3019USDA_CFB3019genetic_marker
USDA_CFB3020USDA_CFB3020genetic_marker
USDA_CFB3021USDA_CFB3021genetic_marker
USDA_CFB3022USDA_CFB3022genetic_marker
USDA_CFB3023USDA_CFB3023genetic_marker
USDA_CFB3024USDA_CFB3024genetic_marker
USDA_CFB3025USDA_CFB3025genetic_marker
USDA_CFB3026USDA_CFB3026genetic_marker

Pages

Projects
This publication contains information about 1 projects:
Project NameDescription
USDA_CFB_SNP_genotype
Properties
Additional details for this publication include:
Property NameValue
Start Page1
Journal CodePGM
Publication CodePGM-8-1
DOI10.3835/plantgenome2014.07.0034