Detection, Validation, and Application of Genotyping-by-Sequencing Based Single Nucleotide Polymorphisms in Upland Cotton

Publication Overview
TitleDetection, Validation, and Application of Genotyping-by-Sequencing Based Single Nucleotide Polymorphisms in Upland Cotton
AuthorsIslam MS, Thyssen GN, Jenkins JN, Fang DD
TypeJournal Article
Journal NameThe Plant Genome
Volume8
Issue1
Year2015
Page(s)1-10
CitationIslam MS, Thyssen GN, Jenkins JN, and Fang DD. Detection, Validation, and Application of Genotyping-by-Sequencing Based Single Nucleotide Polymorphisms in Upland Cotton. The Plant Genome. 2015 March; 8(1):1-10.
Publication CodePGM-8-1

Abstract

The presence of two closely related subgenomes in the allotetraploid Upland cotton, combined with a narrow genetic base of the cultivated varieties, has hindered the identification of polymorphic genetic markers and their use in improving this important crop. Genotyping-by-sequencing (GBS) is a rapid way to identify single nucleotide polymorphism (SNP) markers; however, these SNPs may be specific to the sequenced cotton lines. Our objective was to obtain a large set of polymorphic SNPs with broad applicability to the cultivated cotton germplasm. We selected 11 diverse cultivars and their random-mated recombinant inbred progeny for SNP marker development via GBS. Two different GBS methodologies were used by Data2Bio (D2B) and the Institute for Genome Diversity (IGD) to identify 4441 and 1176 polymorphic SNPs with minor allele frequency of ³0.1, respectively. We further filtered the SNPs and aligned their sequences to the diploid Gossypium raimondii reference genome. We were able to use homeologous SNPs to assign 1071 SNP loci to the At subgenome and 1223 to the Dt subgenome. These filtered SNPs were located in genic regions about twice as frequently as expected by chance. We tested 111 of the SNPs in 154 diverse Upland cotton lines, which confirmed the utility of the SNP markers developed in such approach. Not only were the SNPs identified in the 11 cultivars present in the 154 cotton lines, no two cultivars had identical SNP genotypes. We conclude that GBS can be easily used to discover SNPs in Upland cotton, which can be converted to functional genotypic assays for use in breeding and genetic studies.
Features
This publication contains information about 5,839 features:
Feature NameUniquenameType
USDA_CFB1902USDA_CFB1902genetic_marker
USDA_CFB1903USDA_CFB1903genetic_marker
USDA_CFB1904USDA_CFB1904genetic_marker
USDA_CFB1905USDA_CFB1905genetic_marker
USDA_CFB1906USDA_CFB1906genetic_marker
USDA_CFB1907USDA_CFB1907genetic_marker
USDA_CFB1908USDA_CFB1908genetic_marker
USDA_CFB1909USDA_CFB1909genetic_marker
USDA_CFB1910USDA_CFB1910genetic_marker
USDA_CFB1911USDA_CFB1911genetic_marker
USDA_CFB1912USDA_CFB1912genetic_marker
USDA_CFB1913USDA_CFB1913genetic_marker
USDA_CFB1914USDA_CFB1914genetic_marker
USDA_CFB1915USDA_CFB1915genetic_marker
USDA_CFB1916USDA_CFB1916genetic_marker
USDA_CFB1917USDA_CFB1917genetic_marker
USDA_CFB1918USDA_CFB1918genetic_marker
USDA_CFB1919USDA_CFB1919genetic_marker
USDA_CFB1920USDA_CFB1920genetic_marker
USDA_CFB1921USDA_CFB1921genetic_marker
USDA_CFB1922USDA_CFB1922genetic_marker
USDA_CFB1923USDA_CFB1923genetic_marker
USDA_CFB1924USDA_CFB1924genetic_marker
USDA_CFB1925USDA_CFB1925genetic_marker
USDA_CFB1926USDA_CFB1926genetic_marker

Pages

Projects
This publication contains information about 1 projects:
Project NameDescription
USDA_CFB_SNP_genotype
Properties
Additional details for this publication include:
Property NameValue
Start Page1
Journal CodePGM
Publication CodePGM-8-1
DOI10.3835/plantgenome2014.07.0034