|
Publication Overview
Title | Genetic mapping and QTL analysis of fiber-related traits in cotton (Gossypium). |
Authors | Mei M; Syed NH; Gao W; Thaxton PM; Smith CW; Stelly DM; Chen ZJ |
Type | Journal Article |
Journal Name | Theoretical and Applied Genetics |
Volume | 108 |
Issue | (2) |
Year | 2004 |
Page(s) | 280 291 |
Citation | Mei M, Syed N, Gao W, Thaxton P, Smith C, Stelly D, Chen Z. Genetic mapping and QTL analysis of fiber-related traits in cotton (Gossypium). Theoretical and applied genetics. 2004; 108(2):280-291 |
Publication Code | TAG-108-280 |
Abstract
Cotton, the leading natural fiber crop, is largely produced by two primary cultivated allotetraploid species known as Upland or American cotton (Gossypium hirsutum L.) and Pima or Egyptian cotton (G. barbadense L.). The allotetraploid species diverged from each other and from their diploid progenitors (A or D genome) through selection and domestication after polyploidization. To analyze cotton AD genomes and dissect agronomic traits, we have developed a genetic map in an F2 population derived from interspecific hybrids between G. hirsutum L. cv. Acala-44 and G. barbadense L. cv. Pima S-7. A total of 392 genetic loci, including 333 amplified fragment length polymorphisms (AFLPs), 47 simple sequence repeats (SSRs), and 12 restriction fragment length polymorphisms (RFLPs), were mapped in 42 linkage groups, which span 3,287 cM and cover approximately 70\\% of the genome. Using chromosomal aneuploid interspecific hybrids and a set of 29 RFLP and SSR framework markers, we assigned19 linkage groups involving 223 loci to 12 chromosomes. Comparing four pairs of homoeologous chromosomes, we found that with one exception linkage distances in the A-subgenome chromosomes were larger than those in their D-subgenome homoeologues, reflecting higher recombination frequencies and/or larger chromosomes in the A subgenome. Segregation distortion was observed in 30 out of 392 loci mapped in cotton. Moreover, approximately 29\\% of the RFLPs behaved as dominant loci, which may result from rapid genomic changes. The cotton genetic map was used for quantitative trait loci (QTL) analysis using composite interval mapping and permutation tests. We detected seven QTLs for six fiber-related traits\\; five of these were distributed among A-subgenome chromosomes, the genome donor of fiber traits. The detection of QTLs in both the A subgenome in this study and the D subgenome in a previous study suggests that fiber-related traits are controlled by the genes in homoeologous genomes, which are subjected to selection and domestication. Some chromosomes contain clusters of QTLs and presumably contribute to the large amount of phenotypic variation that is present for fiber-related traits.
Features
This publication contains information about 337 features:
Pages
Projects
This publication contains information about 1 projects:
Featuremaps
This publication contains information about 1 maps:
Properties
Additional
details for this publication include:
Property Name | Value |
Publication Model | Print-Electronic |
ISSN | 0040-5752 |
Publication Type | Journal Article |
Publication Date | 2004 |
Language Abbr | eng |
Journal Abbreviation | Theor. Appl. Genet. |
Publication Type | Research Support, Non-U.S. Gov't |
Journal Country | Germany |
Language | English |
pISSN | 0040-5752 |
Publication Code | TAG-108-280 |
Published Location | Germany |
eISSN | 1432-2242 |
Journal Alias | Theoretical and Applied Genetics. Theoretische und angewandte Genetik |
Journal Code | TAG |
Keywords | fiber quality, simple sequence length polymorphism, Gossypium barbadense, interspecific hybridization, quantitative trait loci, chromosome mapping, genetic markers, amplified fragment length polymorphism, microsatellite repeats, restriction fragment length polymorphism, loci, linkage groups, segregation distortion, lint cotton, Gossypium hirsutum; Gossypium barbadense; interspecific hybridization; quantitative trait loci; chromosome mapping; genetic markers; amplified fragment length polymorphism; microsatellite repeats; restriction fragment length polymorphism; loci; linkage groups; segregation distortion; lint cotton; fiber quality; simple sequence length polymorphism; Chromosome Segregation; Chromosomes, Plant; DNA, Plant; Genome, Plant; Gossypium/*genetics/*growth & development; *Linkage (Genetics); Phenotype; Polymorphism, Genetic; Polymorphism, Restriction Fragment Length; *Polyploidy; Random Amplified Polymorphic DNA Technique; molecular linkage map; polyploid formation; hirsutum-l; allotetraploid cotton; quantitative traits; genome evolution; aflp markers; rflp; populations |
|