Development of Gossypium anomalum-derived microsatellite markers and their use for genome-wide identification of recombination between the G. anomalum and G. hirsutum genomes

Publication Overview
TitleDevelopment of Gossypium anomalum-derived microsatellite markers and their use for genome-wide identification of recombination between the G. anomalum and G. hirsutum genomes
AuthorsZhai C, Xu P, Zhang X, Guo Q, Zhang X, Xu Z, Shen X
TypeJournal Article
Journal NameTAG. Theoretical and applied genetics. Theoretische und angewandte Genetik
Year2015
CitationZhai C, Xu P, Zhang X, Guo Q, Zhang X, Xu Z, Shen X. Development of Gossypium anomalum-derived microsatellite markers and their use for genome-wide identification of recombination between the G. anomalum and G. hirsutum genomes. TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik. 2015 May 9.

Abstract

KEY MESSAGE
We reported the first development of Gossypium anomalum -derived microsatellite markers and identification of recombination between sexually incompatible species by a synthesized hexaploid on genome level. To continue to develop improved cotton varieties, it is essential to transfer desired characters from diploid wild cotton species such as Gossypium anomalum to cultivated allotetraploid cotton species. However, interspecific reproductive barriers limit gene transfer between species. In a previous study, we used colchicine treatment to produce a synthesized hexaploid derived from an interspecific hybrid between Gossypium hirsutum and G. anomalum and demonstrated its hybridity and doubled status using morphological, cytological and molecular marker methods. In the current study, to effectively monitor G. anomalum genome components in the G. hirsutum background, we developed 5974 non-redundant G. anomalum-derived SSR primer pairs using RNA-Seq technology, which were combined with a publicly available physical map. Based on this combined map and segregation data from the BC2F1 population, we identified a set of 230 informative G. anomalum-specific SSR markers distributed on the chromosomes, which cover 95.72 % of the cotton genome. After analyzing BC2F1 segregation data, 50 recombination types from 357 recombination events were identified, which cover 81.48 % of the corresponding G. anomalum genome. A total of 203 recombination events occurred on chromosome 11, accounting for 56.86 % of the recombination events on all chromosomes. Recombination hotspots were observed at marker intervals JAAS1148-NAU5100 on chromosome 1 and JAAS0426-NAU998 on chromosome 2. Therefore, all G. anomalum chromosomes are capable of recombining with At chromosomes in G. hirsutum. This study represents an important step towards introgressing desirable traits into cultivated cotton from the wild cotton species G. anomalum.

Features
This publication contains information about 6,654 features:
Feature NameUniquenameType
JAAS0801JAAS0801genetic_marker
JAAS0802JAAS0802genetic_marker
JAAS0803JAAS0803genetic_marker
JAAS0804JAAS0804genetic_marker
JAAS0805JAAS0805genetic_marker
JAAS0806JAAS0806genetic_marker
JAAS0807JAAS0807genetic_marker
JAAS0808JAAS0808genetic_marker
JAAS0809JAAS0809genetic_marker
JAAS0810JAAS0810genetic_marker
JAAS0811JAAS0811genetic_marker
JAAS0812JAAS0812genetic_marker
JAAS0813JAAS0813genetic_marker
JAAS0814JAAS0814genetic_marker
JAAS0815JAAS0815genetic_marker
JAAS0816JAAS0816genetic_marker
JAAS0817JAAS0817genetic_marker
JAAS0818JAAS0818genetic_marker
JAAS0819JAAS0819genetic_marker
JAAS0820JAAS0820genetic_marker
JAAS0821JAAS0821genetic_marker
JAAS0822JAAS0822genetic_marker
JAAS0823JAAS0823genetic_marker
JAAS0824JAAS0824genetic_marker
JAAS0825JAAS0825genetic_marker

Pages

Featuremaps
This publication contains information about 1 maps:
Map Name
(86-1 x G. anomalum) x Su8289, BC2F1 (2015)
Properties
Additional details for this publication include:
Property NameValue
Publication ModelPrint-Electronic
ISSN1432-2242
eISSN1432-2242
Publication Date2015 May 9
Journal AbbreviationTheor. Appl. Genet.
LanguageEnglish
Language AbbrENG
Publication TypeJournal Article