Development of Gossypium anomalum-derived microsatellite markers and their use for genome-wide identification of recombination between the G. anomalum and G. hirsutum genomes

Publication Overview
TitleDevelopment of Gossypium anomalum-derived microsatellite markers and their use for genome-wide identification of recombination between the G. anomalum and G. hirsutum genomes
AuthorsZhai C, Xu P, Zhang X, Guo Q, Zhang X, Xu Z, Shen X
TypeJournal Article
Journal NameTAG. Theoretical and applied genetics. Theoretische und angewandte Genetik
Year2015
CitationZhai C, Xu P, Zhang X, Guo Q, Zhang X, Xu Z, Shen X. Development of Gossypium anomalum-derived microsatellite markers and their use for genome-wide identification of recombination between the G. anomalum and G. hirsutum genomes. TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik. 2015 May 9.

Abstract

KEY MESSAGE
We reported the first development of Gossypium anomalum -derived microsatellite markers and identification of recombination between sexually incompatible species by a synthesized hexaploid on genome level. To continue to develop improved cotton varieties, it is essential to transfer desired characters from diploid wild cotton species such as Gossypium anomalum to cultivated allotetraploid cotton species. However, interspecific reproductive barriers limit gene transfer between species. In a previous study, we used colchicine treatment to produce a synthesized hexaploid derived from an interspecific hybrid between Gossypium hirsutum and G. anomalum and demonstrated its hybridity and doubled status using morphological, cytological and molecular marker methods. In the current study, to effectively monitor G. anomalum genome components in the G. hirsutum background, we developed 5974 non-redundant G. anomalum-derived SSR primer pairs using RNA-Seq technology, which were combined with a publicly available physical map. Based on this combined map and segregation data from the BC2F1 population, we identified a set of 230 informative G. anomalum-specific SSR markers distributed on the chromosomes, which cover 95.72 % of the cotton genome. After analyzing BC2F1 segregation data, 50 recombination types from 357 recombination events were identified, which cover 81.48 % of the corresponding G. anomalum genome. A total of 203 recombination events occurred on chromosome 11, accounting for 56.86 % of the recombination events on all chromosomes. Recombination hotspots were observed at marker intervals JAAS1148-NAU5100 on chromosome 1 and JAAS0426-NAU998 on chromosome 2. Therefore, all G. anomalum chromosomes are capable of recombining with At chromosomes in G. hirsutum. This study represents an important step towards introgressing desirable traits into cultivated cotton from the wild cotton species G. anomalum.

Features
This publication contains information about 6,654 features:
Feature NameUniquenameType
JAAS1001JAAS1001genetic_marker
JAAS1002JAAS1002genetic_marker
JAAS1003JAAS1003genetic_marker
JAAS1004JAAS1004genetic_marker
JAAS1005JAAS1005genetic_marker
JAAS1006JAAS1006genetic_marker
JAAS1007JAAS1007genetic_marker
JAAS1008JAAS1008genetic_marker
JAAS1009JAAS1009genetic_marker
JAAS1010JAAS1010genetic_marker
JAAS1011JAAS1011genetic_marker
JAAS1012JAAS1012genetic_marker
JAAS1013JAAS1013genetic_marker
JAAS1014JAAS1014genetic_marker
JAAS1015JAAS1015genetic_marker
JAAS1016JAAS1016genetic_marker
JAAS1017JAAS1017genetic_marker
JAAS1018JAAS1018genetic_marker
JAAS1019JAAS1019genetic_marker
JAAS1020JAAS1020genetic_marker
JAAS1021JAAS1021genetic_marker
JAAS1022JAAS1022genetic_marker
JAAS1023JAAS1023genetic_marker
JAAS1024JAAS1024genetic_marker
JAAS1025JAAS1025genetic_marker

Pages

Featuremaps
This publication contains information about 1 maps:
Map Name
(86-1 x G. anomalum) x Su8289, BC2F1 (2015)
Properties
Additional details for this publication include:
Property NameValue
Publication ModelPrint-Electronic
ISSN1432-2242
eISSN1432-2242
Publication Date2015 May 9
Journal AbbreviationTheor. Appl. Genet.
LanguageEnglish
Language AbbrENG
Publication TypeJournal Article