Development of Gossypium anomalum-derived microsatellite markers and their use for genome-wide identification of recombination between the G. anomalum and G. hirsutum genomes

Publication Overview
TitleDevelopment of Gossypium anomalum-derived microsatellite markers and their use for genome-wide identification of recombination between the G. anomalum and G. hirsutum genomes
AuthorsZhai C, Xu P, Zhang X, Guo Q, Zhang X, Xu Z, Shen X
TypeJournal Article
Journal NameTAG. Theoretical and applied genetics. Theoretische und angewandte Genetik
Year2015
CitationZhai C, Xu P, Zhang X, Guo Q, Zhang X, Xu Z, Shen X. Development of Gossypium anomalum-derived microsatellite markers and their use for genome-wide identification of recombination between the G. anomalum and G. hirsutum genomes. TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik. 2015 May 9.

Abstract

KEY MESSAGE
We reported the first development of Gossypium anomalum -derived microsatellite markers and identification of recombination between sexually incompatible species by a synthesized hexaploid on genome level. To continue to develop improved cotton varieties, it is essential to transfer desired characters from diploid wild cotton species such as Gossypium anomalum to cultivated allotetraploid cotton species. However, interspecific reproductive barriers limit gene transfer between species. In a previous study, we used colchicine treatment to produce a synthesized hexaploid derived from an interspecific hybrid between Gossypium hirsutum and G. anomalum and demonstrated its hybridity and doubled status using morphological, cytological and molecular marker methods. In the current study, to effectively monitor G. anomalum genome components in the G. hirsutum background, we developed 5974 non-redundant G. anomalum-derived SSR primer pairs using RNA-Seq technology, which were combined with a publicly available physical map. Based on this combined map and segregation data from the BC2F1 population, we identified a set of 230 informative G. anomalum-specific SSR markers distributed on the chromosomes, which cover 95.72 % of the cotton genome. After analyzing BC2F1 segregation data, 50 recombination types from 357 recombination events were identified, which cover 81.48 % of the corresponding G. anomalum genome. A total of 203 recombination events occurred on chromosome 11, accounting for 56.86 % of the recombination events on all chromosomes. Recombination hotspots were observed at marker intervals JAAS1148-NAU5100 on chromosome 1 and JAAS0426-NAU998 on chromosome 2. Therefore, all G. anomalum chromosomes are capable of recombining with At chromosomes in G. hirsutum. This study represents an important step towards introgressing desirable traits into cultivated cotton from the wild cotton species G. anomalum.

Features
This publication contains information about 6,654 features:
Feature NameUniquenameType
JAAS1676JAAS1676genetic_marker
JAAS1677JAAS1677genetic_marker
JAAS1678JAAS1678genetic_marker
JAAS1679JAAS1679genetic_marker
JAAS1680JAAS1680genetic_marker
JAAS1681JAAS1681genetic_marker
JAAS1682JAAS1682genetic_marker
JAAS1683JAAS1683genetic_marker
JAAS1684JAAS1684genetic_marker
JAAS1685JAAS1685genetic_marker
JAAS1686JAAS1686genetic_marker
JAAS1687JAAS1687genetic_marker
JAAS1688JAAS1688genetic_marker
JAAS1689JAAS1689genetic_marker
JAAS1690JAAS1690genetic_marker
JAAS1691JAAS1691genetic_marker
JAAS1692JAAS1692genetic_marker
JAAS1693JAAS1693genetic_marker
JAAS1694JAAS1694genetic_marker
JAAS1695JAAS1695genetic_marker
JAAS1696JAAS1696genetic_marker
JAAS1697JAAS1697genetic_marker
JAAS1698JAAS1698genetic_marker
JAAS1699JAAS1699genetic_marker
JAAS1700JAAS1700genetic_marker

Pages

Featuremaps
This publication contains information about 1 maps:
Map Name
(86-1 x G. anomalum) x Su8289, BC2F1 (2015)
Properties
Additional details for this publication include:
Property NameValue
Publication ModelPrint-Electronic
ISSN1432-2242
eISSN1432-2242
Publication Date2015 May 9
Journal AbbreviationTheor. Appl. Genet.
LanguageEnglish
Language AbbrENG
Publication TypeJournal Article