Development of Gossypium anomalum-derived microsatellite markers and their use for genome-wide identification of recombination between the G. anomalum and G. hirsutum genomes

Publication Overview
TitleDevelopment of Gossypium anomalum-derived microsatellite markers and their use for genome-wide identification of recombination between the G. anomalum and G. hirsutum genomes
AuthorsZhai C, Xu P, Zhang X, Guo Q, Zhang X, Xu Z, Shen X
TypeJournal Article
Journal NameTAG. Theoretical and applied genetics. Theoretische und angewandte Genetik
Year2015
CitationZhai C, Xu P, Zhang X, Guo Q, Zhang X, Xu Z, Shen X. Development of Gossypium anomalum-derived microsatellite markers and their use for genome-wide identification of recombination between the G. anomalum and G. hirsutum genomes. TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik. 2015 May 9.

Abstract

KEY MESSAGE
We reported the first development of Gossypium anomalum -derived microsatellite markers and identification of recombination between sexually incompatible species by a synthesized hexaploid on genome level. To continue to develop improved cotton varieties, it is essential to transfer desired characters from diploid wild cotton species such as Gossypium anomalum to cultivated allotetraploid cotton species. However, interspecific reproductive barriers limit gene transfer between species. In a previous study, we used colchicine treatment to produce a synthesized hexaploid derived from an interspecific hybrid between Gossypium hirsutum and G. anomalum and demonstrated its hybridity and doubled status using morphological, cytological and molecular marker methods. In the current study, to effectively monitor G. anomalum genome components in the G. hirsutum background, we developed 5974 non-redundant G. anomalum-derived SSR primer pairs using RNA-Seq technology, which were combined with a publicly available physical map. Based on this combined map and segregation data from the BC2F1 population, we identified a set of 230 informative G. anomalum-specific SSR markers distributed on the chromosomes, which cover 95.72 % of the cotton genome. After analyzing BC2F1 segregation data, 50 recombination types from 357 recombination events were identified, which cover 81.48 % of the corresponding G. anomalum genome. A total of 203 recombination events occurred on chromosome 11, accounting for 56.86 % of the recombination events on all chromosomes. Recombination hotspots were observed at marker intervals JAAS1148-NAU5100 on chromosome 1 and JAAS0426-NAU998 on chromosome 2. Therefore, all G. anomalum chromosomes are capable of recombining with At chromosomes in G. hirsutum. This study represents an important step towards introgressing desirable traits into cultivated cotton from the wild cotton species G. anomalum.

Features
This publication contains information about 6,654 features:
Feature NameUniquenameType
JAAS2251JAAS2251genetic_marker
JAAS2252JAAS2252genetic_marker
JAAS2253JAAS2253genetic_marker
JAAS2254JAAS2254genetic_marker
JAAS2255JAAS2255genetic_marker
JAAS2256JAAS2256genetic_marker
JAAS2257JAAS2257genetic_marker
JAAS2258JAAS2258genetic_marker
JAAS2259JAAS2259genetic_marker
JAAS2260JAAS2260genetic_marker
JAAS2261JAAS2261genetic_marker
JAAS2262JAAS2262genetic_marker
JAAS2263JAAS2263genetic_marker
JAAS2264JAAS2264genetic_marker
JAAS2265JAAS2265genetic_marker
JAAS2266JAAS2266genetic_marker
JAAS2267JAAS2267genetic_marker
JAAS2268JAAS2268genetic_marker
JAAS2269JAAS2269genetic_marker
JAAS2270JAAS2270genetic_marker
JAAS2271JAAS2271genetic_marker
JAAS2272JAAS2272genetic_marker
JAAS2273JAAS2273genetic_marker
JAAS2274JAAS2274genetic_marker
JAAS2275JAAS2275genetic_marker

Pages

Featuremaps
This publication contains information about 1 maps:
Map Name
(86-1 x G. anomalum) x Su8289, BC2F1 (2015)
Properties
Additional details for this publication include:
Property NameValue
Publication ModelPrint-Electronic
ISSN1432-2242
eISSN1432-2242
Publication Date2015 May 9
Journal AbbreviationTheor. Appl. Genet.
LanguageEnglish
Language AbbrENG
Publication TypeJournal Article