Detection, Validation, and Application of Genotyping-by-Sequencing Based Single Nucleotide Polymorphisms in Upland Cotton

Publication Overview
TitleDetection, Validation, and Application of Genotyping-by-Sequencing Based Single Nucleotide Polymorphisms in Upland Cotton
AuthorsIslam MS, Thyssen GN, Jenkins JN, Fang DD
TypeJournal Article
Journal NameThe Plant Genome
Volume8
Issue1
Year2015
Page(s)1-10
CitationIslam MS, Thyssen GN, Jenkins JN, and Fang DD. Detection, Validation, and Application of Genotyping-by-Sequencing Based Single Nucleotide Polymorphisms in Upland Cotton. The Plant Genome. 2015 March; 8(1):1-10.
Publication CodePGM-8-1

Abstract

The presence of two closely related subgenomes in the allotetraploid Upland cotton, combined with a narrow genetic base of the cultivated varieties, has hindered the identification of polymorphic genetic markers and their use in improving this important crop. Genotyping-by-sequencing (GBS) is a rapid way to identify single nucleotide polymorphism (SNP) markers; however, these SNPs may be specific to the sequenced cotton lines. Our objective was to obtain a large set of polymorphic SNPs with broad applicability to the cultivated cotton germplasm. We selected 11 diverse cultivars and their random-mated recombinant inbred progeny for SNP marker development via GBS. Two different GBS methodologies were used by Data2Bio (D2B) and the Institute for Genome Diversity (IGD) to identify 4441 and 1176 polymorphic SNPs with minor allele frequency of ³0.1, respectively. We further filtered the SNPs and aligned their sequences to the diploid Gossypium raimondii reference genome. We were able to use homeologous SNPs to assign 1071 SNP loci to the At subgenome and 1223 to the Dt subgenome. These filtered SNPs were located in genic regions about twice as frequently as expected by chance. We tested 111 of the SNPs in 154 diverse Upland cotton lines, which confirmed the utility of the SNP markers developed in such approach. Not only were the SNPs identified in the 11 cultivars present in the 154 cotton lines, no two cultivars had identical SNP genotypes. We conclude that GBS can be easily used to discover SNPs in Upland cotton, which can be converted to functional genotypic assays for use in breeding and genetic studies.
Features
This publication contains information about 5,839 features:
Feature NameUniquenameType
USDA_CFB3302USDA_CFB3302genetic_marker
USDA_CFB3303USDA_CFB3303genetic_marker
USDA_CFB3304USDA_CFB3304genetic_marker
USDA_CFB3305USDA_CFB3305genetic_marker
USDA_CFB3306USDA_CFB3306genetic_marker
USDA_CFB3307USDA_CFB3307genetic_marker
USDA_CFB3308USDA_CFB3308genetic_marker
USDA_CFB3309USDA_CFB3309genetic_marker
USDA_CFB3310USDA_CFB3310genetic_marker
USDA_CFB3311USDA_CFB3311genetic_marker
USDA_CFB3312USDA_CFB3312genetic_marker
USDA_CFB3313USDA_CFB3313genetic_marker
USDA_CFB3314USDA_CFB3314genetic_marker
USDA_CFB3315USDA_CFB3315genetic_marker
USDA_CFB3316USDA_CFB3316genetic_marker
USDA_CFB3317USDA_CFB3317genetic_marker
USDA_CFB3318USDA_CFB3318genetic_marker
USDA_CFB3319USDA_CFB3319genetic_marker
USDA_CFB3320USDA_CFB3320genetic_marker
USDA_CFB3321USDA_CFB3321genetic_marker
USDA_CFB3322USDA_CFB3322genetic_marker
USDA_CFB3323USDA_CFB3323genetic_marker
USDA_CFB3324USDA_CFB3324genetic_marker
USDA_CFB3325USDA_CFB3325genetic_marker
USDA_CFB3326USDA_CFB3326genetic_marker

Pages

Projects
This publication contains information about 1 projects:
Project NameDescription
USDA_CFB_SNP_genotype
Properties
Additional details for this publication include:
Property NameValue
Start Page1
Journal CodePGM
Publication CodePGM-8-1
DOI10.3835/plantgenome2014.07.0034