Detection, Validation, and Application of Genotyping-by-Sequencing Based Single Nucleotide Polymorphisms in Upland Cotton

Publication Overview
TitleDetection, Validation, and Application of Genotyping-by-Sequencing Based Single Nucleotide Polymorphisms in Upland Cotton
AuthorsIslam MS, Thyssen GN, Jenkins JN, Fang DD
TypeJournal Article
Journal NameThe Plant Genome
Volume8
Issue1
Year2015
Page(s)1-10
CitationIslam MS, Thyssen GN, Jenkins JN, and Fang DD. Detection, Validation, and Application of Genotyping-by-Sequencing Based Single Nucleotide Polymorphisms in Upland Cotton. The Plant Genome. 2015 March; 8(1):1-10.
Publication CodePGM-8-1

Abstract

The presence of two closely related subgenomes in the allotetraploid Upland cotton, combined with a narrow genetic base of the cultivated varieties, has hindered the identification of polymorphic genetic markers and their use in improving this important crop. Genotyping-by-sequencing (GBS) is a rapid way to identify single nucleotide polymorphism (SNP) markers; however, these SNPs may be specific to the sequenced cotton lines. Our objective was to obtain a large set of polymorphic SNPs with broad applicability to the cultivated cotton germplasm. We selected 11 diverse cultivars and their random-mated recombinant inbred progeny for SNP marker development via GBS. Two different GBS methodologies were used by Data2Bio (D2B) and the Institute for Genome Diversity (IGD) to identify 4441 and 1176 polymorphic SNPs with minor allele frequency of ³0.1, respectively. We further filtered the SNPs and aligned their sequences to the diploid Gossypium raimondii reference genome. We were able to use homeologous SNPs to assign 1071 SNP loci to the At subgenome and 1223 to the Dt subgenome. These filtered SNPs were located in genic regions about twice as frequently as expected by chance. We tested 111 of the SNPs in 154 diverse Upland cotton lines, which confirmed the utility of the SNP markers developed in such approach. Not only were the SNPs identified in the 11 cultivars present in the 154 cotton lines, no two cultivars had identical SNP genotypes. We conclude that GBS can be easily used to discover SNPs in Upland cotton, which can be converted to functional genotypic assays for use in breeding and genetic studies.
Features
This publication contains information about 5,839 features:
Feature NameUniquenameType
USDA_CFB1602USDA_CFB1602genetic_marker
USDA_CFB1603USDA_CFB1603genetic_marker
USDA_CFB1604USDA_CFB1604genetic_marker
USDA_CFB1605USDA_CFB1605genetic_marker
USDA_CFB1606USDA_CFB1606genetic_marker
USDA_CFB1607USDA_CFB1607genetic_marker
USDA_CFB1608USDA_CFB1608genetic_marker
USDA_CFB1609USDA_CFB1609genetic_marker
USDA_CFB1610USDA_CFB1610genetic_marker
USDA_CFB1611USDA_CFB1611genetic_marker
USDA_CFB1612USDA_CFB1612genetic_marker
USDA_CFB1613USDA_CFB1613genetic_marker
USDA_CFB1614USDA_CFB1614genetic_marker
USDA_CFB1615USDA_CFB1615genetic_marker
USDA_CFB1616USDA_CFB1616genetic_marker
USDA_CFB1617USDA_CFB1617genetic_marker
USDA_CFB1618USDA_CFB1618genetic_marker
USDA_CFB1619USDA_CFB1619genetic_marker
USDA_CFB1620USDA_CFB1620genetic_marker
USDA_CFB1621USDA_CFB1621genetic_marker
USDA_CFB1622USDA_CFB1622genetic_marker
USDA_CFB1623USDA_CFB1623genetic_marker
USDA_CFB1624USDA_CFB1624genetic_marker
USDA_CFB1625USDA_CFB1625genetic_marker
USDA_CFB1626USDA_CFB1626genetic_marker

Pages

Projects
This publication contains information about 1 projects:
Project NameDescription
USDA_CFB_SNP_genotype
Properties
Additional details for this publication include:
Property NameValue
Start Page1
Journal CodePGM
Publication CodePGM-8-1
DOI10.3835/plantgenome2014.07.0034