A Long-Read Transcriptome Assembly of Cotton (Gossypium hirsutum L.) and Intraspecific Single Nucleotide Polymorphism Discovery.

Publication Overview
TitleA Long-Read Transcriptome Assembly of Cotton (Gossypium hirsutum L.) and Intraspecific Single Nucleotide Polymorphism Discovery.
AuthorsAshrafi H, Hulse-Kemp AM, Wang F, Yang SS, Guan X, Jones DC, Matvienko M, Mockaitis K, Chen ZJ, Stelly DM, Van Deynze A
TypeJournal Article
Journal NameThe Plant Genome
Volume8
Issue2
Year2015
Page(s)1-14
CitationAshrafi H, Hulse-Kemp AM, Wang F, Yang SS, Guan X, Jones DC, Matvienko M, Mockaitis K, Chen ZJ, Stelly DM, Van Deynze A. A Long-Read Transcriptome Assembly of Cotton (Gossypium hirsutum L.) and Intraspecific Single Nucleotide Polymorphism Discovery. 2015; 8(2):1-14.

Abstract

Upland cotton (Gossypium hirsutum L.) has a narrow germplasm base, which constrains marker development and hampers intraspecific breeding. A pressing need exists for high-throughput single nucleotide polymorphism (SNP) markers that can be readily applied to germplasm in breeding and breeding-related research programs. Despite progress made in developing new sequencing technologies during the past decade, the cost of sequencing remains substantial when one is dealing with numerous samples and large genomes. Several strategies have been proposed to lower the cost of sequencing for multiple genotypes of large-genome species like cotton, such as transcriptome sequencing and reduced-representation DNA sequencing. This paper reports the development of a transcriptome assembly of the inbred line Texas Marker-1 (TM-1), a genetic standard for cotton, its usefulness as a reference for RNA sequencing (RNA-seq)-based SNP identification, and the availability of transcriptome sequences of four other cotton cultivars. An assembly of TM-1 was made using Roche 454 transcriptome reads combined with an assembly of all available public expressed sequence tag (EST) sequences of TM-1. The TM-1 assembly consists of 72,450 contigs with a total of 70 million bp. Functional predictions of the transcripts were estimated by alignment to selected protein databases. Transcriptome sequences of the five lines, including TM-1, were obtained using an Illumina Genome Analyzer-II, and the short reads were mapped to the TM-1 assembly to discover SNPs among the five lines. We identified >14,000 unfiltered allelic SNPs, of which ∼3,700 SNPs were retained for assay development after applying several rigorous filters. This paper reports availability of the reference transcriptome assembly and shows its utility in developing intraspecific SNP markers in upland cotton.
Features
This publication contains information about 14,613 features:
Feature NameUniquenameType
UCD_Gh_M_002797UCD_Gh_M_002797genetic_marker
UCD_Gh_M_002798UCD_Gh_M_002798genetic_marker
UCD_Gh_M_002799UCD_Gh_M_002799genetic_marker
UCD_Gh_M_002800UCD_Gh_M_002800genetic_marker
UCD_Gh_M_002801UCD_Gh_M_002801genetic_marker
UCD_Gh_M_002802UCD_Gh_M_002802genetic_marker
UCD_Gh_M_002803UCD_Gh_M_002803genetic_marker
UCD_Gh_M_002804UCD_Gh_M_002804genetic_marker
UCD_Gh_M_002805UCD_Gh_M_002805genetic_marker
UCD_Gh_M_002806UCD_Gh_M_002806genetic_marker
UCD_Gh_M_002807UCD_Gh_M_002807genetic_marker
UCD_Gh_M_002808UCD_Gh_M_002808genetic_marker
UCD_Gh_M_002809UCD_Gh_M_002809genetic_marker
UCD_Gh_M_002810UCD_Gh_M_002810genetic_marker
UCD_Gh_M_002811UCD_Gh_M_002811genetic_marker
UCD_Gh_M_002812UCD_Gh_M_002812genetic_marker
UCD_Gh_M_002813UCD_Gh_M_002813genetic_marker
UCD_Gh_M_002814UCD_Gh_M_002814genetic_marker
UCD_Gh_M_002815UCD_Gh_M_002815genetic_marker
UCD_Gh_M_002816UCD_Gh_M_002816genetic_marker
UCD_Gh_M_002817UCD_Gh_M_002817genetic_marker
UCD_Gh_M_002818UCD_Gh_M_002818genetic_marker
UCD_Gh_M_002819UCD_Gh_M_002819genetic_marker
UCD_Gh_M_002820UCD_Gh_M_002820genetic_marker
UCD_Gh_M_002821UCD_Gh_M_002821genetic_marker

Pages

Libraries
This publication contains information about 1 libraries:
Library NameUnique NameOrganism
TAMU_CottonSNP63KTAMU_CottonSNP63KGossypium spp.
Properties
Additional details for this publication include:
Property NameValue
URLhttps://dl.sciencesocieties.org/publications/tpg/articles/8/2/plantgenome2014.10.0068