A Long-Read Transcriptome Assembly of Cotton (Gossypium hirsutum L.) and Intraspecific Single Nucleotide Polymorphism Discovery.

Publication Overview
TitleA Long-Read Transcriptome Assembly of Cotton (Gossypium hirsutum L.) and Intraspecific Single Nucleotide Polymorphism Discovery.
AuthorsAshrafi H, Hulse-Kemp AM, Wang F, Yang SS, Guan X, Jones DC, Matvienko M, Mockaitis K, Chen ZJ, Stelly DM, Van Deynze A
TypeJournal Article
Journal NameThe Plant Genome
Volume8
Issue2
Year2015
Page(s)1-14
CitationAshrafi H, Hulse-Kemp AM, Wang F, Yang SS, Guan X, Jones DC, Matvienko M, Mockaitis K, Chen ZJ, Stelly DM, Van Deynze A. A Long-Read Transcriptome Assembly of Cotton (Gossypium hirsutum L.) and Intraspecific Single Nucleotide Polymorphism Discovery. 2015; 8(2):1-14.

Abstract

Upland cotton (Gossypium hirsutum L.) has a narrow germplasm base, which constrains marker development and hampers intraspecific breeding. A pressing need exists for high-throughput single nucleotide polymorphism (SNP) markers that can be readily applied to germplasm in breeding and breeding-related research programs. Despite progress made in developing new sequencing technologies during the past decade, the cost of sequencing remains substantial when one is dealing with numerous samples and large genomes. Several strategies have been proposed to lower the cost of sequencing for multiple genotypes of large-genome species like cotton, such as transcriptome sequencing and reduced-representation DNA sequencing. This paper reports the development of a transcriptome assembly of the inbred line Texas Marker-1 (TM-1), a genetic standard for cotton, its usefulness as a reference for RNA sequencing (RNA-seq)-based SNP identification, and the availability of transcriptome sequences of four other cotton cultivars. An assembly of TM-1 was made using Roche 454 transcriptome reads combined with an assembly of all available public expressed sequence tag (EST) sequences of TM-1. The TM-1 assembly consists of 72,450 contigs with a total of 70 million bp. Functional predictions of the transcripts were estimated by alignment to selected protein databases. Transcriptome sequences of the five lines, including TM-1, were obtained using an Illumina Genome Analyzer-II, and the short reads were mapped to the TM-1 assembly to discover SNPs among the five lines. We identified >14,000 unfiltered allelic SNPs, of which ∼3,700 SNPs were retained for assay development after applying several rigorous filters. This paper reports availability of the reference transcriptome assembly and shows its utility in developing intraspecific SNP markers in upland cotton.
Features
This publication contains information about 14,613 features:
Feature NameUniquenameType
UCD_Gh_M_006756UCD_Gh_M_006756genetic_marker
UCD_Gh_M_006757UCD_Gh_M_006757genetic_marker
UCD_Gh_M_006758UCD_Gh_M_006758genetic_marker
UCD_Gh_M_006759UCD_Gh_M_006759genetic_marker
UCD_Gh_M_006760UCD_Gh_M_006760genetic_marker
UCD_Gh_M_006761UCD_Gh_M_006761genetic_marker
UCD_Gh_M_006762UCD_Gh_M_006762genetic_marker
UCD_Gh_M_006763UCD_Gh_M_006763genetic_marker
UCD_Gh_M_006764UCD_Gh_M_006764genetic_marker
UCD_Gh_M_006765UCD_Gh_M_006765genetic_marker
UCD_Gh_M_006766UCD_Gh_M_006766genetic_marker
UCD_Gh_M_006767UCD_Gh_M_006767genetic_marker
UCD_Gh_M_006768UCD_Gh_M_006768genetic_marker
UCD_Gh_M_006769UCD_Gh_M_006769genetic_marker
UCD_Gh_M_006770UCD_Gh_M_006770genetic_marker
UCD_Gh_M_006771UCD_Gh_M_006771genetic_marker
UCD_Gh_M_006772UCD_Gh_M_006772genetic_marker
UCD_Gh_M_006773UCD_Gh_M_006773genetic_marker
UCD_Gh_M_006774UCD_Gh_M_006774genetic_marker
UCD_Gh_M_006775UCD_Gh_M_006775genetic_marker
UCD_Gh_M_006776UCD_Gh_M_006776genetic_marker
UCD_Gh_M_006777UCD_Gh_M_006777genetic_marker
UCD_Gh_M_006778UCD_Gh_M_006778genetic_marker
UCD_Gh_M_006779UCD_Gh_M_006779genetic_marker
UCD_Gh_M_006780UCD_Gh_M_006780genetic_marker

Pages

Libraries
This publication contains information about 1 libraries:
Library NameUnique NameOrganism
TAMU_CottonSNP63KTAMU_CottonSNP63KGossypium spp.
Properties
Additional details for this publication include:
Property NameValue
URLhttps://dl.sciencesocieties.org/publications/tpg/articles/8/2/plantgenome2014.10.0068