A Long-Read Transcriptome Assembly of Cotton (Gossypium hirsutum L.) and Intraspecific Single Nucleotide Polymorphism Discovery.

Publication Overview
TitleA Long-Read Transcriptome Assembly of Cotton (Gossypium hirsutum L.) and Intraspecific Single Nucleotide Polymorphism Discovery.
AuthorsAshrafi H, Hulse-Kemp AM, Wang F, Yang SS, Guan X, Jones DC, Matvienko M, Mockaitis K, Chen ZJ, Stelly DM, Van Deynze A
TypeJournal Article
Journal NameThe Plant Genome
Volume8
Issue2
Year2015
Page(s)1-14
CitationAshrafi H, Hulse-Kemp AM, Wang F, Yang SS, Guan X, Jones DC, Matvienko M, Mockaitis K, Chen ZJ, Stelly DM, Van Deynze A. A Long-Read Transcriptome Assembly of Cotton (Gossypium hirsutum L.) and Intraspecific Single Nucleotide Polymorphism Discovery. 2015; 8(2):1-14.

Abstract

Upland cotton (Gossypium hirsutum L.) has a narrow germplasm base, which constrains marker development and hampers intraspecific breeding. A pressing need exists for high-throughput single nucleotide polymorphism (SNP) markers that can be readily applied to germplasm in breeding and breeding-related research programs. Despite progress made in developing new sequencing technologies during the past decade, the cost of sequencing remains substantial when one is dealing with numerous samples and large genomes. Several strategies have been proposed to lower the cost of sequencing for multiple genotypes of large-genome species like cotton, such as transcriptome sequencing and reduced-representation DNA sequencing. This paper reports the development of a transcriptome assembly of the inbred line Texas Marker-1 (TM-1), a genetic standard for cotton, its usefulness as a reference for RNA sequencing (RNA-seq)-based SNP identification, and the availability of transcriptome sequences of four other cotton cultivars. An assembly of TM-1 was made using Roche 454 transcriptome reads combined with an assembly of all available public expressed sequence tag (EST) sequences of TM-1. The TM-1 assembly consists of 72,450 contigs with a total of 70 million bp. Functional predictions of the transcripts were estimated by alignment to selected protein databases. Transcriptome sequences of the five lines, including TM-1, were obtained using an Illumina Genome Analyzer-II, and the short reads were mapped to the TM-1 assembly to discover SNPs among the five lines. We identified >14,000 unfiltered allelic SNPs, of which ∼3,700 SNPs were retained for assay development after applying several rigorous filters. This paper reports availability of the reference transcriptome assembly and shows its utility in developing intraspecific SNP markers in upland cotton.
Features
This publication contains information about 14,613 features:
Feature NameUniquenameType
UCD_Gh_M_008225UCD_Gh_M_008225genetic_marker
UCD_Gh_M_008226UCD_Gh_M_008226genetic_marker
UCD_Gh_M_008227UCD_Gh_M_008227genetic_marker
UCD_Gh_M_008228UCD_Gh_M_008228genetic_marker
UCD_Gh_M_008229UCD_Gh_M_008229genetic_marker
UCD_Gh_M_008230UCD_Gh_M_008230genetic_marker
UCD_Gh_M_008231UCD_Gh_M_008231genetic_marker
UCD_Gh_M_008232UCD_Gh_M_008232genetic_marker
UCD_Gh_M_008233UCD_Gh_M_008233genetic_marker
UCD_Gh_M_008234UCD_Gh_M_008234genetic_marker
UCD_Gh_M_008235UCD_Gh_M_008235genetic_marker
UCD_Gh_M_008236UCD_Gh_M_008236genetic_marker
UCD_Gh_M_008237UCD_Gh_M_008237genetic_marker
UCD_Gh_M_008238UCD_Gh_M_008238genetic_marker
UCD_Gh_M_008239UCD_Gh_M_008239genetic_marker
UCD_Gh_M_008240UCD_Gh_M_008240genetic_marker
UCD_Gh_M_008241UCD_Gh_M_008241genetic_marker
UCD_Gh_M_008242UCD_Gh_M_008242genetic_marker
UCD_Gh_M_008243UCD_Gh_M_008243genetic_marker
UCD_Gh_M_008244UCD_Gh_M_008244genetic_marker
UCD_Gh_M_008245UCD_Gh_M_008245genetic_marker
UCD_Gh_M_008246UCD_Gh_M_008246genetic_marker
UCD_Gh_M_008247UCD_Gh_M_008247genetic_marker
UCD_Gh_M_008248UCD_Gh_M_008248genetic_marker
UCD_Gh_M_008249UCD_Gh_M_008249genetic_marker

Pages

Libraries
This publication contains information about 1 libraries:
Library NameUnique NameOrganism
TAMU_CottonSNP63KTAMU_CottonSNP63KGossypium spp.
Properties
Additional details for this publication include:
Property NameValue
URLhttps://dl.sciencesocieties.org/publications/tpg/articles/8/2/plantgenome2014.10.0068