A Long-Read Transcriptome Assembly of Cotton (Gossypium hirsutum L.) and Intraspecific Single Nucleotide Polymorphism Discovery.

Publication Overview
TitleA Long-Read Transcriptome Assembly of Cotton (Gossypium hirsutum L.) and Intraspecific Single Nucleotide Polymorphism Discovery.
AuthorsAshrafi H, Hulse-Kemp AM, Wang F, Yang SS, Guan X, Jones DC, Matvienko M, Mockaitis K, Chen ZJ, Stelly DM, Van Deynze A
TypeJournal Article
Journal NameThe Plant Genome
Volume8
Issue2
Year2015
Page(s)1-14
CitationAshrafi H, Hulse-Kemp AM, Wang F, Yang SS, Guan X, Jones DC, Matvienko M, Mockaitis K, Chen ZJ, Stelly DM, Van Deynze A. A Long-Read Transcriptome Assembly of Cotton (Gossypium hirsutum L.) and Intraspecific Single Nucleotide Polymorphism Discovery. 2015; 8(2):1-14.

Abstract

Upland cotton (Gossypium hirsutum L.) has a narrow germplasm base, which constrains marker development and hampers intraspecific breeding. A pressing need exists for high-throughput single nucleotide polymorphism (SNP) markers that can be readily applied to germplasm in breeding and breeding-related research programs. Despite progress made in developing new sequencing technologies during the past decade, the cost of sequencing remains substantial when one is dealing with numerous samples and large genomes. Several strategies have been proposed to lower the cost of sequencing for multiple genotypes of large-genome species like cotton, such as transcriptome sequencing and reduced-representation DNA sequencing. This paper reports the development of a transcriptome assembly of the inbred line Texas Marker-1 (TM-1), a genetic standard for cotton, its usefulness as a reference for RNA sequencing (RNA-seq)-based SNP identification, and the availability of transcriptome sequences of four other cotton cultivars. An assembly of TM-1 was made using Roche 454 transcriptome reads combined with an assembly of all available public expressed sequence tag (EST) sequences of TM-1. The TM-1 assembly consists of 72,450 contigs with a total of 70 million bp. Functional predictions of the transcripts were estimated by alignment to selected protein databases. Transcriptome sequences of the five lines, including TM-1, were obtained using an Illumina Genome Analyzer-II, and the short reads were mapped to the TM-1 assembly to discover SNPs among the five lines. We identified >14,000 unfiltered allelic SNPs, of which ∼3,700 SNPs were retained for assay development after applying several rigorous filters. This paper reports availability of the reference transcriptome assembly and shows its utility in developing intraspecific SNP markers in upland cotton.
Features
This publication contains information about 14,613 features:
Feature NameUniquenameType
UCD_Gh_M_010193UCD_Gh_M_010193genetic_marker
UCD_Gh_M_010194UCD_Gh_M_010194genetic_marker
UCD_Gh_M_010195UCD_Gh_M_010195genetic_marker
UCD_Gh_M_010196UCD_Gh_M_010196genetic_marker
UCD_Gh_M_010197UCD_Gh_M_010197genetic_marker
UCD_Gh_M_010198UCD_Gh_M_010198genetic_marker
UCD_Gh_M_010199UCD_Gh_M_010199genetic_marker
UCD_Gh_M_010200UCD_Gh_M_010200genetic_marker
UCD_Gh_M_010201UCD_Gh_M_010201genetic_marker
UCD_Gh_M_010202UCD_Gh_M_010202genetic_marker
UCD_Gh_M_010203UCD_Gh_M_010203genetic_marker
UCD_Gh_M_010204UCD_Gh_M_010204genetic_marker
UCD_Gh_M_010205UCD_Gh_M_010205genetic_marker
UCD_Gh_M_010206UCD_Gh_M_010206genetic_marker
UCD_Gh_M_010207UCD_Gh_M_010207genetic_marker
UCD_Gh_M_010208UCD_Gh_M_010208genetic_marker
UCD_Gh_M_010209UCD_Gh_M_010209genetic_marker
UCD_Gh_M_010210UCD_Gh_M_010210genetic_marker
UCD_Gh_M_010211UCD_Gh_M_010211genetic_marker
UCD_Gh_M_010212UCD_Gh_M_010212genetic_marker
UCD_Gh_M_010213UCD_Gh_M_010213genetic_marker
UCD_Gh_M_010214UCD_Gh_M_010214genetic_marker
UCD_Gh_M_010215UCD_Gh_M_010215genetic_marker
UCD_Gh_M_010216UCD_Gh_M_010216genetic_marker
UCD_Gh_M_010217UCD_Gh_M_010217genetic_marker

Pages

Libraries
This publication contains information about 1 libraries:
Library NameUnique NameOrganism
TAMU_CottonSNP63KTAMU_CottonSNP63KGossypium spp.
Properties
Additional details for this publication include:
Property NameValue
URLhttps://dl.sciencesocieties.org/publications/tpg/articles/8/2/plantgenome2014.10.0068