A Long-Read Transcriptome Assembly of Cotton (Gossypium hirsutum L.) and Intraspecific Single Nucleotide Polymorphism Discovery.

Publication Overview
TitleA Long-Read Transcriptome Assembly of Cotton (Gossypium hirsutum L.) and Intraspecific Single Nucleotide Polymorphism Discovery.
AuthorsAshrafi H, Hulse-Kemp AM, Wang F, Yang SS, Guan X, Jones DC, Matvienko M, Mockaitis K, Chen ZJ, Stelly DM, Van Deynze A
TypeJournal Article
Journal NameThe Plant Genome
Volume8
Issue2
Year2015
Page(s)1-14
CitationAshrafi H, Hulse-Kemp AM, Wang F, Yang SS, Guan X, Jones DC, Matvienko M, Mockaitis K, Chen ZJ, Stelly DM, Van Deynze A. A Long-Read Transcriptome Assembly of Cotton (Gossypium hirsutum L.) and Intraspecific Single Nucleotide Polymorphism Discovery. 2015; 8(2):1-14.

Abstract

Upland cotton (Gossypium hirsutum L.) has a narrow germplasm base, which constrains marker development and hampers intraspecific breeding. A pressing need exists for high-throughput single nucleotide polymorphism (SNP) markers that can be readily applied to germplasm in breeding and breeding-related research programs. Despite progress made in developing new sequencing technologies during the past decade, the cost of sequencing remains substantial when one is dealing with numerous samples and large genomes. Several strategies have been proposed to lower the cost of sequencing for multiple genotypes of large-genome species like cotton, such as transcriptome sequencing and reduced-representation DNA sequencing. This paper reports the development of a transcriptome assembly of the inbred line Texas Marker-1 (TM-1), a genetic standard for cotton, its usefulness as a reference for RNA sequencing (RNA-seq)-based SNP identification, and the availability of transcriptome sequences of four other cotton cultivars. An assembly of TM-1 was made using Roche 454 transcriptome reads combined with an assembly of all available public expressed sequence tag (EST) sequences of TM-1. The TM-1 assembly consists of 72,450 contigs with a total of 70 million bp. Functional predictions of the transcripts were estimated by alignment to selected protein databases. Transcriptome sequences of the five lines, including TM-1, were obtained using an Illumina Genome Analyzer-II, and the short reads were mapped to the TM-1 assembly to discover SNPs among the five lines. We identified >14,000 unfiltered allelic SNPs, of which ∼3,700 SNPs were retained for assay development after applying several rigorous filters. This paper reports availability of the reference transcriptome assembly and shows its utility in developing intraspecific SNP markers in upland cotton.
Features
This publication contains information about 14,613 features:
Feature NameUniquenameType
UCD_Gh_M_013797UCD_Gh_M_013797genetic_marker
UCD_Gh_M_013798UCD_Gh_M_013798genetic_marker
UCD_Gh_M_013799UCD_Gh_M_013799genetic_marker
UCD_Gh_M_013800UCD_Gh_M_013800genetic_marker
UCD_Gh_M_013801UCD_Gh_M_013801genetic_marker
UCD_Gh_M_013802UCD_Gh_M_013802genetic_marker
UCD_Gh_M_013803UCD_Gh_M_013803genetic_marker
UCD_Gh_M_013804UCD_Gh_M_013804genetic_marker
UCD_Gh_M_013805UCD_Gh_M_013805genetic_marker
UCD_Gh_M_013806UCD_Gh_M_013806genetic_marker
UCD_Gh_M_013807UCD_Gh_M_013807genetic_marker
UCD_Gh_M_013808UCD_Gh_M_013808genetic_marker
UCD_Gh_M_013809UCD_Gh_M_013809genetic_marker
UCD_Gh_M_013810UCD_Gh_M_013810genetic_marker
UCD_Gh_M_013811UCD_Gh_M_013811genetic_marker
UCD_Gh_M_013812UCD_Gh_M_013812genetic_marker
UCD_Gh_M_013813UCD_Gh_M_013813genetic_marker
UCD_Gh_M_013814UCD_Gh_M_013814genetic_marker
UCD_Gh_M_013815UCD_Gh_M_013815genetic_marker
UCD_Gh_M_013816UCD_Gh_M_013816genetic_marker
UCD_Gh_M_013817UCD_Gh_M_013817genetic_marker
UCD_Gh_M_013818UCD_Gh_M_013818genetic_marker
UCD_Gh_M_013819UCD_Gh_M_013819genetic_marker
UCD_Gh_M_013820UCD_Gh_M_013820genetic_marker
UCD_Gh_M_013821UCD_Gh_M_013821genetic_marker

Pages

Libraries
This publication contains information about 1 libraries:
Library NameUnique NameOrganism
TAMU_CottonSNP63KTAMU_CottonSNP63KGossypium spp.
Properties
Additional details for this publication include:
Property NameValue
URLhttps://dl.sciencesocieties.org/publications/tpg/articles/8/2/plantgenome2014.10.0068