A Long-Read Transcriptome Assembly of Cotton (Gossypium hirsutum L.) and Intraspecific Single Nucleotide Polymorphism Discovery.

Publication Overview
TitleA Long-Read Transcriptome Assembly of Cotton (Gossypium hirsutum L.) and Intraspecific Single Nucleotide Polymorphism Discovery.
AuthorsAshrafi H, Hulse-Kemp AM, Wang F, Yang SS, Guan X, Jones DC, Matvienko M, Mockaitis K, Chen ZJ, Stelly DM, Van Deynze A
TypeJournal Article
Journal NameThe Plant Genome
Volume8
Issue2
Year2015
Page(s)1-14
CitationAshrafi H, Hulse-Kemp AM, Wang F, Yang SS, Guan X, Jones DC, Matvienko M, Mockaitis K, Chen ZJ, Stelly DM, Van Deynze A. A Long-Read Transcriptome Assembly of Cotton (Gossypium hirsutum L.) and Intraspecific Single Nucleotide Polymorphism Discovery. 2015; 8(2):1-14.

Abstract

Upland cotton (Gossypium hirsutum L.) has a narrow germplasm base, which constrains marker development and hampers intraspecific breeding. A pressing need exists for high-throughput single nucleotide polymorphism (SNP) markers that can be readily applied to germplasm in breeding and breeding-related research programs. Despite progress made in developing new sequencing technologies during the past decade, the cost of sequencing remains substantial when one is dealing with numerous samples and large genomes. Several strategies have been proposed to lower the cost of sequencing for multiple genotypes of large-genome species like cotton, such as transcriptome sequencing and reduced-representation DNA sequencing. This paper reports the development of a transcriptome assembly of the inbred line Texas Marker-1 (TM-1), a genetic standard for cotton, its usefulness as a reference for RNA sequencing (RNA-seq)-based SNP identification, and the availability of transcriptome sequences of four other cotton cultivars. An assembly of TM-1 was made using Roche 454 transcriptome reads combined with an assembly of all available public expressed sequence tag (EST) sequences of TM-1. The TM-1 assembly consists of 72,450 contigs with a total of 70 million bp. Functional predictions of the transcripts were estimated by alignment to selected protein databases. Transcriptome sequences of the five lines, including TM-1, were obtained using an Illumina Genome Analyzer-II, and the short reads were mapped to the TM-1 assembly to discover SNPs among the five lines. We identified >14,000 unfiltered allelic SNPs, of which ∼3,700 SNPs were retained for assay development after applying several rigorous filters. This paper reports availability of the reference transcriptome assembly and shows its utility in developing intraspecific SNP markers in upland cotton.
Features
This publication contains information about 14,613 features:
Feature NameUniquenameType
UCD_Gh_M_001776UCD_Gh_M_001776genetic_marker
UCD_Gh_M_001777UCD_Gh_M_001777genetic_marker
UCD_Gh_M_001778UCD_Gh_M_001778genetic_marker
UCD_Gh_M_001779UCD_Gh_M_001779genetic_marker
UCD_Gh_M_001780UCD_Gh_M_001780genetic_marker
UCD_Gh_M_001781UCD_Gh_M_001781genetic_marker
UCD_Gh_M_001782UCD_Gh_M_001782genetic_marker
UCD_Gh_M_001783UCD_Gh_M_001783genetic_marker
UCD_Gh_M_001784UCD_Gh_M_001784genetic_marker
UCD_Gh_M_001785UCD_Gh_M_001785genetic_marker
UCD_Gh_M_001786UCD_Gh_M_001786genetic_marker
UCD_Gh_M_001787UCD_Gh_M_001787genetic_marker
UCD_Gh_M_001788UCD_Gh_M_001788genetic_marker
UCD_Gh_M_001789UCD_Gh_M_001789genetic_marker
UCD_Gh_M_001790UCD_Gh_M_001790genetic_marker
UCD_Gh_M_001791UCD_Gh_M_001791genetic_marker
UCD_Gh_M_001792UCD_Gh_M_001792genetic_marker
UCD_Gh_M_001793UCD_Gh_M_001793genetic_marker
UCD_Gh_M_001794UCD_Gh_M_001794genetic_marker
UCD_Gh_M_001795UCD_Gh_M_001795genetic_marker
UCD_Gh_M_001796UCD_Gh_M_001796genetic_marker
UCD_Gh_M_001797UCD_Gh_M_001797genetic_marker
UCD_Gh_M_001798UCD_Gh_M_001798genetic_marker
UCD_Gh_M_001799UCD_Gh_M_001799genetic_marker
UCD_Gh_M_001800UCD_Gh_M_001800genetic_marker

Pages

Libraries
This publication contains information about 1 libraries:
Library NameUnique NameOrganism
TAMU_CottonSNP63KTAMU_CottonSNP63KGossypium spp.
Properties
Additional details for this publication include:
Property NameValue
URLhttps://dl.sciencesocieties.org/publications/tpg/articles/8/2/plantgenome2014.10.0068