A Long-Read Transcriptome Assembly of Cotton (Gossypium hirsutum L.) and Intraspecific Single Nucleotide Polymorphism Discovery.

Publication Overview
TitleA Long-Read Transcriptome Assembly of Cotton (Gossypium hirsutum L.) and Intraspecific Single Nucleotide Polymorphism Discovery.
AuthorsAshrafi H, Hulse-Kemp AM, Wang F, Yang SS, Guan X, Jones DC, Matvienko M, Mockaitis K, Chen ZJ, Stelly DM, Van Deynze A
TypeJournal Article
Journal NameThe Plant Genome
Volume8
Issue2
Year2015
Page(s)1-14
CitationAshrafi H, Hulse-Kemp AM, Wang F, Yang SS, Guan X, Jones DC, Matvienko M, Mockaitis K, Chen ZJ, Stelly DM, Van Deynze A. A Long-Read Transcriptome Assembly of Cotton (Gossypium hirsutum L.) and Intraspecific Single Nucleotide Polymorphism Discovery. 2015; 8(2):1-14.

Abstract

Upland cotton (Gossypium hirsutum L.) has a narrow germplasm base, which constrains marker development and hampers intraspecific breeding. A pressing need exists for high-throughput single nucleotide polymorphism (SNP) markers that can be readily applied to germplasm in breeding and breeding-related research programs. Despite progress made in developing new sequencing technologies during the past decade, the cost of sequencing remains substantial when one is dealing with numerous samples and large genomes. Several strategies have been proposed to lower the cost of sequencing for multiple genotypes of large-genome species like cotton, such as transcriptome sequencing and reduced-representation DNA sequencing. This paper reports the development of a transcriptome assembly of the inbred line Texas Marker-1 (TM-1), a genetic standard for cotton, its usefulness as a reference for RNA sequencing (RNA-seq)-based SNP identification, and the availability of transcriptome sequences of four other cotton cultivars. An assembly of TM-1 was made using Roche 454 transcriptome reads combined with an assembly of all available public expressed sequence tag (EST) sequences of TM-1. The TM-1 assembly consists of 72,450 contigs with a total of 70 million bp. Functional predictions of the transcripts were estimated by alignment to selected protein databases. Transcriptome sequences of the five lines, including TM-1, were obtained using an Illumina Genome Analyzer-II, and the short reads were mapped to the TM-1 assembly to discover SNPs among the five lines. We identified >14,000 unfiltered allelic SNPs, of which ∼3,700 SNPs were retained for assay development after applying several rigorous filters. This paper reports availability of the reference transcriptome assembly and shows its utility in developing intraspecific SNP markers in upland cotton.
Features
This publication contains information about 14,613 features:
Feature NameUniquenameType
UCD_Gh_M_000225UCD_Gh_M_000225genetic_marker
UCD_Gh_M_000226UCD_Gh_M_000226genetic_marker
UCD_Gh_M_000227UCD_Gh_M_000227genetic_marker
UCD_Gh_M_000228UCD_Gh_M_000228genetic_marker
UCD_Gh_M_000229UCD_Gh_M_000229genetic_marker
UCD_Gh_M_000230UCD_Gh_M_000230genetic_marker
UCD_Gh_M_000231UCD_Gh_M_000231genetic_marker
UCD_Gh_M_000232UCD_Gh_M_000232genetic_marker
UCD_Gh_M_000233UCD_Gh_M_000233genetic_marker
UCD_Gh_M_000234UCD_Gh_M_000234genetic_marker
UCD_Gh_M_000235UCD_Gh_M_000235genetic_marker
UCD_Gh_M_000236UCD_Gh_M_000236genetic_marker
UCD_Gh_M_000237UCD_Gh_M_000237genetic_marker
UCD_Gh_M_000238UCD_Gh_M_000238genetic_marker
UCD_Gh_M_000239UCD_Gh_M_000239genetic_marker
UCD_Gh_M_000240UCD_Gh_M_000240genetic_marker
UCD_Gh_M_000241UCD_Gh_M_000241genetic_marker
UCD_Gh_M_000242UCD_Gh_M_000242genetic_marker
UCD_Gh_M_000243UCD_Gh_M_000243genetic_marker
UCD_Gh_M_000244UCD_Gh_M_000244genetic_marker
UCD_Gh_M_000245UCD_Gh_M_000245genetic_marker
UCD_Gh_M_000246UCD_Gh_M_000246genetic_marker
UCD_Gh_M_000247UCD_Gh_M_000247genetic_marker
UCD_Gh_M_000248UCD_Gh_M_000248genetic_marker
UCD_Gh_M_000249UCD_Gh_M_000249genetic_marker

Pages

Libraries
This publication contains information about 1 libraries:
Library NameUnique NameOrganism
TAMU_CottonSNP63KTAMU_CottonSNP63KGossypium spp.
Properties
Additional details for this publication include:
Property NameValue
URLhttps://dl.sciencesocieties.org/publications/tpg/articles/8/2/plantgenome2014.10.0068