Enriching an intraspecific genetic map and identifying QTL for fiber quality and yield component traits across multiple environments in Upland cotton (Gossypium hirsutum L.)

Publication Overview
TitleEnriching an intraspecific genetic map and identifying QTL for fiber quality and yield component traits across multiple environments in Upland cotton (Gossypium hirsutum L.)
AuthorsLiu X, Teng Z, Wang J, Wu T, Zhang Z, Deng X, Fang X, Tan Z, Ali I, Liu D, Zhang J, Liu D, Liu F, Zhang Z
TypeJournal Article
Journal NameMolecular genetics and genomics : MGG
Year2017
CitationLiu X, Teng Z, Wang J, Wu T, Zhang Z, Deng X, Fang X, Tan Z, Ali I, Liu D, Zhang J, Liu D, Liu F, Zhang Z. Enriching an intraspecific genetic map and identifying QTL for fiber quality and yield component traits across multiple environments in Upland cotton (Gossypium hirsutum L.). Molecular genetics and genomics : MGG. 2017 Jul 21.

Abstract

Cotton is a significant commercial crop that plays an indispensable role in many domains. Constructing high-density genetic maps and identifying stable quantitative trait locus (QTL) controlling agronomic traits are necessary prerequisites for marker-assisted selection (MAS). A total of 14,899 SSR primer pairs designed from the genome sequence of G. raimondii were screened for polymorphic markers between mapping parents CCRI 35 and Yumian 1, and 712 SSR markers showing polymorphism were used to genotype 180 lines from a (CCRI 35 × Yumian 1) recombinant inbred line (RIL) population. Genetic linkage analysis was conducted on 726 loci obtained from the 712 polymorphic SSR markers, along with 1379 SSR loci obtained in our previous study, and a high-density genetic map with 2051 loci was constructed, which spanned 3508.29 cM with an average distance of 1.71 cM between adjacent markers. Marker orders on the linkage map are highly consistent with the corresponding physical orders on a G. hirsutum genome sequence. Based on fiber quality and yield component trait data collected from six environments, 113 QTLs were identified through two analytical methods. Among these 113 QTLs, 50 were considered stable (detected in multiple environments or for which phenotypic variance explained by additive effect was greater than environment effect), and 18 of these 50 were identified with stability by both methods. These 18 QTLs, including eleven for fiber quality and seven for yield component traits, could be priorities for MAS.

Features
This publication contains information about 706 features:
Feature NameUniquenameType
SWU16553SWU16553genetic_marker
SWU16573SWU16573genetic_marker
SWU16576SWU16576genetic_marker
SWU16597SWU16597genetic_marker
SWU16676SWU16676genetic_marker
SWU16680SWU16680genetic_marker
SWU16696SWU16696genetic_marker
SWU16716SWU16716genetic_marker
SWU16721SWU16721genetic_marker
SWU16724SWU16724genetic_marker
SWU16730SWU16730genetic_marker
SWU16732SWU16732genetic_marker
SWU16755SWU16755genetic_marker
SWU16780SWU16780genetic_marker
SWU16781SWU16781genetic_marker
SWU16782SWU16782genetic_marker
SWU16783SWU16783genetic_marker
SWU16798SWU16798genetic_marker
SWU16848SWU16848genetic_marker
SWU16853SWU16853genetic_marker
SWU16856SWU16856genetic_marker
SWU16896SWU16896genetic_marker
SWU16934SWU16934genetic_marker
SWU17078SWU17078genetic_marker
SWU17082SWU17082genetic_marker

Pages

Projects
This publication contains information about 1 projects:
Project NameDescription
CY-RIL-2017
Properties
Additional details for this publication include:
Property NameValue
ISSN1617-4623
Publication ModelPrint-Electronic
eISSN1617-4623
Publication Date2017 Jul 21
Journal AbbreviationMol. Genet. Genomics
DOI10.1007/s00438-017-1347-8
Elocation10.1007/s00438-017-1347-8
LanguageEnglish
Language Abbreng
Publication TypeJournal Article
Journal CountryGermany