Enriching an intraspecific genetic map and identifying QTL for fiber quality and yield component traits across multiple environments in Upland cotton (Gossypium hirsutum L.)

Publication Overview
TitleEnriching an intraspecific genetic map and identifying QTL for fiber quality and yield component traits across multiple environments in Upland cotton (Gossypium hirsutum L.)
AuthorsLiu X, Teng Z, Wang J, Wu T, Zhang Z, Deng X, Fang X, Tan Z, Ali I, Liu D, Zhang J, Liu D, Liu F, Zhang Z
TypeJournal Article
Journal NameMolecular genetics and genomics : MGG
Year2017
CitationLiu X, Teng Z, Wang J, Wu T, Zhang Z, Deng X, Fang X, Tan Z, Ali I, Liu D, Zhang J, Liu D, Liu F, Zhang Z. Enriching an intraspecific genetic map and identifying QTL for fiber quality and yield component traits across multiple environments in Upland cotton (Gossypium hirsutum L.). Molecular genetics and genomics : MGG. 2017 Jul 21.

Abstract

Cotton is a significant commercial crop that plays an indispensable role in many domains. Constructing high-density genetic maps and identifying stable quantitative trait locus (QTL) controlling agronomic traits are necessary prerequisites for marker-assisted selection (MAS). A total of 14,899 SSR primer pairs designed from the genome sequence of G. raimondii were screened for polymorphic markers between mapping parents CCRI 35 and Yumian 1, and 712 SSR markers showing polymorphism were used to genotype 180 lines from a (CCRI 35 × Yumian 1) recombinant inbred line (RIL) population. Genetic linkage analysis was conducted on 726 loci obtained from the 712 polymorphic SSR markers, along with 1379 SSR loci obtained in our previous study, and a high-density genetic map with 2051 loci was constructed, which spanned 3508.29 cM with an average distance of 1.71 cM between adjacent markers. Marker orders on the linkage map are highly consistent with the corresponding physical orders on a G. hirsutum genome sequence. Based on fiber quality and yield component trait data collected from six environments, 113 QTLs were identified through two analytical methods. Among these 113 QTLs, 50 were considered stable (detected in multiple environments or for which phenotypic variance explained by additive effect was greater than environment effect), and 18 of these 50 were identified with stability by both methods. These 18 QTLs, including eleven for fiber quality and seven for yield component traits, could be priorities for MAS.

Features
This publication contains information about 706 features:
Feature NameUniquenameType
SWU17832SWU17832genetic_marker
SWU17852SWU17852genetic_marker
SWU17882SWU17882genetic_marker
SWU17887SWU17887genetic_marker
SWU17907SWU17907genetic_marker
SWU17910SWU17910genetic_marker
SWU17915SWU17915genetic_marker
SWU17966SWU17966genetic_marker
SWU17983SWU17983genetic_marker
SWU18053SWU18053genetic_marker
SWU18054SWU18054genetic_marker
SWU18101SWU18101genetic_marker
SWU18110SWU18110genetic_marker
SWU18148SWU18148genetic_marker
SWU18150SWU18150genetic_marker
SWU18151SWU18151genetic_marker
SWU18180SWU18180genetic_marker
SWU18183SWU18183genetic_marker
SWU18184SWU18184genetic_marker
SWU18223SWU18223genetic_marker
SWU18236SWU18236genetic_marker
SWU18238SWU18238genetic_marker
SWU18240SWU18240genetic_marker
SWU18246SWU18246genetic_marker
SWU18265SWU18265genetic_marker

Pages

Projects
This publication contains information about 1 projects:
Project NameDescription
CY-RIL-2017
Properties
Additional details for this publication include:
Property NameValue
ISSN1617-4623
Publication ModelPrint-Electronic
eISSN1617-4623
Publication Date2017 Jul 21
Journal AbbreviationMol. Genet. Genomics
DOI10.1007/s00438-017-1347-8
Elocation10.1007/s00438-017-1347-8
LanguageEnglish
Language Abbreng
Publication TypeJournal Article
Journal CountryGermany