Enriching an intraspecific genetic map and identifying QTL for fiber quality and yield component traits across multiple environments in Upland cotton (Gossypium hirsutum L.)

Publication Overview
TitleEnriching an intraspecific genetic map and identifying QTL for fiber quality and yield component traits across multiple environments in Upland cotton (Gossypium hirsutum L.)
AuthorsLiu X, Teng Z, Wang J, Wu T, Zhang Z, Deng X, Fang X, Tan Z, Ali I, Liu D, Zhang J, Liu D, Liu F, Zhang Z
TypeJournal Article
Journal NameMolecular genetics and genomics : MGG
Year2017
CitationLiu X, Teng Z, Wang J, Wu T, Zhang Z, Deng X, Fang X, Tan Z, Ali I, Liu D, Zhang J, Liu D, Liu F, Zhang Z. Enriching an intraspecific genetic map and identifying QTL for fiber quality and yield component traits across multiple environments in Upland cotton (Gossypium hirsutum L.). Molecular genetics and genomics : MGG. 2017 Jul 21.

Abstract

Cotton is a significant commercial crop that plays an indispensable role in many domains. Constructing high-density genetic maps and identifying stable quantitative trait locus (QTL) controlling agronomic traits are necessary prerequisites for marker-assisted selection (MAS). A total of 14,899 SSR primer pairs designed from the genome sequence of G. raimondii were screened for polymorphic markers between mapping parents CCRI 35 and Yumian 1, and 712 SSR markers showing polymorphism were used to genotype 180 lines from a (CCRI 35 × Yumian 1) recombinant inbred line (RIL) population. Genetic linkage analysis was conducted on 726 loci obtained from the 712 polymorphic SSR markers, along with 1379 SSR loci obtained in our previous study, and a high-density genetic map with 2051 loci was constructed, which spanned 3508.29 cM with an average distance of 1.71 cM between adjacent markers. Marker orders on the linkage map are highly consistent with the corresponding physical orders on a G. hirsutum genome sequence. Based on fiber quality and yield component trait data collected from six environments, 113 QTLs were identified through two analytical methods. Among these 113 QTLs, 50 were considered stable (detected in multiple environments or for which phenotypic variance explained by additive effect was greater than environment effect), and 18 of these 50 were identified with stability by both methods. These 18 QTLs, including eleven for fiber quality and seven for yield component traits, could be priorities for MAS.

Features
This publication contains information about 706 features:
Feature NameUniquenameType
SWU18282SWU18282genetic_marker
SWU18309SWU18309genetic_marker
SWU18311SWU18311genetic_marker
SWU18366SWU18366genetic_marker
SWU18393SWU18393genetic_marker
SWU18422SWU18422genetic_marker
SWU18426SWU18426genetic_marker
SWU18427SWU18427genetic_marker
SWU18429SWU18429genetic_marker
SWU18430SWU18430genetic_marker
SWU18431SWU18431genetic_marker
SWU18433SWU18433genetic_marker
SWU18435SWU18435genetic_marker
SWU18464SWU18464genetic_marker
SWU18465SWU18465genetic_marker
SWU18481SWU18481genetic_marker
SWU18486SWU18486genetic_marker
SWU18578SWU18578genetic_marker
SWU18599SWU18599genetic_marker
SWU18608SWU18608genetic_marker
SWU18615SWU18615genetic_marker
SWU18617SWU18617genetic_marker
SWU18619SWU18619genetic_marker
SWU18657SWU18657genetic_marker
SWU18670SWU18670genetic_marker

Pages

Projects
This publication contains information about 1 projects:
Project NameDescription
CY-RIL-2017
Properties
Additional details for this publication include:
Property NameValue
ISSN1617-4623
Publication ModelPrint-Electronic
eISSN1617-4623
Publication Date2017 Jul 21
Journal AbbreviationMol. Genet. Genomics
DOI10.1007/s00438-017-1347-8
Elocation10.1007/s00438-017-1347-8
LanguageEnglish
Language Abbreng
Publication TypeJournal Article
Journal CountryGermany