Enriching an intraspecific genetic map and identifying QTL for fiber quality and yield component traits across multiple environments in Upland cotton (Gossypium hirsutum L.)

Publication Overview
TitleEnriching an intraspecific genetic map and identifying QTL for fiber quality and yield component traits across multiple environments in Upland cotton (Gossypium hirsutum L.)
AuthorsLiu X, Teng Z, Wang J, Wu T, Zhang Z, Deng X, Fang X, Tan Z, Ali I, Liu D, Zhang J, Liu D, Liu F, Zhang Z
TypeJournal Article
Journal NameMolecular genetics and genomics : MGG
Year2017
CitationLiu X, Teng Z, Wang J, Wu T, Zhang Z, Deng X, Fang X, Tan Z, Ali I, Liu D, Zhang J, Liu D, Liu F, Zhang Z. Enriching an intraspecific genetic map and identifying QTL for fiber quality and yield component traits across multiple environments in Upland cotton (Gossypium hirsutum L.). Molecular genetics and genomics : MGG. 2017 Jul 21.

Abstract

Cotton is a significant commercial crop that plays an indispensable role in many domains. Constructing high-density genetic maps and identifying stable quantitative trait locus (QTL) controlling agronomic traits are necessary prerequisites for marker-assisted selection (MAS). A total of 14,899 SSR primer pairs designed from the genome sequence of G. raimondii were screened for polymorphic markers between mapping parents CCRI 35 and Yumian 1, and 712 SSR markers showing polymorphism were used to genotype 180 lines from a (CCRI 35 × Yumian 1) recombinant inbred line (RIL) population. Genetic linkage analysis was conducted on 726 loci obtained from the 712 polymorphic SSR markers, along with 1379 SSR loci obtained in our previous study, and a high-density genetic map with 2051 loci was constructed, which spanned 3508.29 cM with an average distance of 1.71 cM between adjacent markers. Marker orders on the linkage map are highly consistent with the corresponding physical orders on a G. hirsutum genome sequence. Based on fiber quality and yield component trait data collected from six environments, 113 QTLs were identified through two analytical methods. Among these 113 QTLs, 50 were considered stable (detected in multiple environments or for which phenotypic variance explained by additive effect was greater than environment effect), and 18 of these 50 were identified with stability by both methods. These 18 QTLs, including eleven for fiber quality and seven for yield component traits, could be priorities for MAS.

Features
This publication contains information about 706 features:
Feature NameUniquenameType
SWU19228SWU19228genetic_marker
SWU19326SWU19326genetic_marker
SWU19563SWU19563genetic_marker
SWU19570SWU19570genetic_marker
SWU19610SWU19610genetic_marker
SWU19652SWU19652genetic_marker
SWU19672SWU19672genetic_marker
SWU19674SWU19674genetic_marker
SWU19676SWU19676genetic_marker
SWU19686SWU19686genetic_marker
SWU19712SWU19712genetic_marker
SWU19713SWU19713genetic_marker
SWU19735SWU19735genetic_marker
SWU19761SWU19761genetic_marker
SWU19785SWU19785genetic_marker
SWU19788SWU19788genetic_marker
SWU19789SWU19789genetic_marker
SWU19790SWU19790genetic_marker
SWU19793SWU19793genetic_marker
SWU19794SWU19794genetic_marker
SWU19796SWU19796genetic_marker
SWU19799SWU19799genetic_marker
SWU19802SWU19802genetic_marker
SWU19804SWU19804genetic_marker
SWU19805SWU19805genetic_marker

Pages

Projects
This publication contains information about 1 projects:
Project NameDescription
CY-RIL-2017
Properties
Additional details for this publication include:
Property NameValue
ISSN1617-4623
Publication ModelPrint-Electronic
eISSN1617-4623
Publication Date2017 Jul 21
Journal AbbreviationMol. Genet. Genomics
DOI10.1007/s00438-017-1347-8
Elocation10.1007/s00438-017-1347-8
LanguageEnglish
Language Abbreng
Publication TypeJournal Article
Journal CountryGermany