Enriching an intraspecific genetic map and identifying QTL for fiber quality and yield component traits across multiple environments in Upland cotton (Gossypium hirsutum L.)

Publication Overview
TitleEnriching an intraspecific genetic map and identifying QTL for fiber quality and yield component traits across multiple environments in Upland cotton (Gossypium hirsutum L.)
AuthorsLiu X, Teng Z, Wang J, Wu T, Zhang Z, Deng X, Fang X, Tan Z, Ali I, Liu D, Zhang J, Liu D, Liu F, Zhang Z
TypeJournal Article
Journal NameMolecular genetics and genomics : MGG
Year2017
CitationLiu X, Teng Z, Wang J, Wu T, Zhang Z, Deng X, Fang X, Tan Z, Ali I, Liu D, Zhang J, Liu D, Liu F, Zhang Z. Enriching an intraspecific genetic map and identifying QTL for fiber quality and yield component traits across multiple environments in Upland cotton (Gossypium hirsutum L.). Molecular genetics and genomics : MGG. 2017 Jul 21.

Abstract

Cotton is a significant commercial crop that plays an indispensable role in many domains. Constructing high-density genetic maps and identifying stable quantitative trait locus (QTL) controlling agronomic traits are necessary prerequisites for marker-assisted selection (MAS). A total of 14,899 SSR primer pairs designed from the genome sequence of G. raimondii were screened for polymorphic markers between mapping parents CCRI 35 and Yumian 1, and 712 SSR markers showing polymorphism were used to genotype 180 lines from a (CCRI 35 × Yumian 1) recombinant inbred line (RIL) population. Genetic linkage analysis was conducted on 726 loci obtained from the 712 polymorphic SSR markers, along with 1379 SSR loci obtained in our previous study, and a high-density genetic map with 2051 loci was constructed, which spanned 3508.29 cM with an average distance of 1.71 cM between adjacent markers. Marker orders on the linkage map are highly consistent with the corresponding physical orders on a G. hirsutum genome sequence. Based on fiber quality and yield component trait data collected from six environments, 113 QTLs were identified through two analytical methods. Among these 113 QTLs, 50 were considered stable (detected in multiple environments or for which phenotypic variance explained by additive effect was greater than environment effect), and 18 of these 50 were identified with stability by both methods. These 18 QTLs, including eleven for fiber quality and seven for yield component traits, could be priorities for MAS.

Features
This publication contains information about 706 features:
Feature NameUniquenameType
SWU10726SWU10726genetic_marker
SWU10762SWU10762genetic_marker
SWU10781SWU10781genetic_marker
SWU10783SWU10783genetic_marker
SWU10826SWU10826genetic_marker
SWU10864SWU10864genetic_marker
SWU10910SWU10910genetic_marker
SWU10931SWU10931genetic_marker
SWU10941SWU10941genetic_marker
SWU10975SWU10975genetic_marker
SWU10986SWU10986genetic_marker
SWU10987SWU10987genetic_marker
SWU11064SWU11064genetic_marker
SWU11118SWU11118genetic_marker
SWU11353SWU11353genetic_marker
SWU11486SWU11486genetic_marker
SWU11499SWU11499genetic_marker
SWU11503SWU11503genetic_marker
SWU11505SWU11505genetic_marker
SWU11506SWU11506genetic_marker
SWU11508SWU11508genetic_marker
SWU11568SWU11568genetic_marker
SWU11581SWU11581genetic_marker
SWU11599SWU11599genetic_marker
SWU11615SWU11615genetic_marker

Pages

Projects
This publication contains information about 1 projects:
Project NameDescription
CY-RIL-2017
Properties
Additional details for this publication include:
Property NameValue
ISSN1617-4623
Publication ModelPrint-Electronic
eISSN1617-4623
Publication Date2017 Jul 21
Journal AbbreviationMol. Genet. Genomics
DOI10.1007/s00438-017-1347-8
Elocation10.1007/s00438-017-1347-8
LanguageEnglish
Language Abbreng
Publication TypeJournal Article
Journal CountryGermany