High-density 80 K SNP array is a powerful tool for genotyping G. hirsutum accessions and genome analysis

Publication Overview
TitleHigh-density 80 K SNP array is a powerful tool for genotyping G. hirsutum accessions and genome analysis
AuthorsCaiping Cai, Guozhong Zhu, Tianzhen Zhang, and Wangzhen Guo
TypeJournal Article
Journal NameBMC Genomics
Volume18
Year2017
Page(s)654
CitationCai C., Zhu G., Zhang T., Guo W. High-density 80 K SNP array is a powerful tool for genotyping G. hirsutum accessions and genome analysis BMC Genomics 2017 18:654

Abstract

Background: High-throughput genotyping platforms play important roles in plant genomic studies. Cotton (Gossypium spp.) is the world’s important natural textile fiber and oil crop. Upland cotton accounts for more than 90% of the world’s cotton production, however, modern upland cotton cultivars have narrow genetic diversity. The amounts of genomic sequencing and re-sequencing data released make it possible to develop a high-quality single nucleotide polymorphism (SNP) array for intraspecific genotyping detection in cotton. Results: Here we report a high-throughput CottonSNP80K array and its utilization in genotyping detection in different cotton accessions. 82,259 SNP markers were selected from the re-sequencing data of 100 cotton cultivars and used to produce the array on the Illumina Infinium platform. 77,774 SNP loci (94.55%) were successfully synthesized on the array. Of them, 77,252 (99.33%) had call rates of >95% in 352 cotton accessions and 59,502 (76.51%) were polymorphic loci. Application tests using 22 cotton accessions with parent/F1 combinations or with similar genetic backgrounds showed that CottonSNP80K array had high genotyping accuracy, good repeatability, and wide applicability. Phylogenetic analysis of 312 cotton cultivars and landraces with wide geographical distribution showed that they could be classified into ten groups, irrelevant of their origins. We found that the different landraces were clustered in different subgroups, indicating that these landraces were major contributors to the development of different breeding populations of modern G. hirsutum cultivars in China. We integrated a total of 54,588 SNPs (MAFs >0.05) associated with 10 salt stress traits into 288 G. hirsutum accessions for genome-wide association studies (GWAS), and eight significant SNPs associated with three salt stress traits were detected. Conclusions: We developed CottonSNP80K array with high polymorphism to distinguish upland cotton accessions. Diverse application tests indicated that the CottonSNP80K play important roles in germplasm genotyping, variety verification, functional genomics studies, and molecular breeding in cotton. Keywords: Single nucleotide polymorphism (SNP), Array, Upland cotton, Genotyping identification, Genome-wide association studies (GWAS), Molecular breeding
Features
This publication contains information about 77,774 features:
Feature NameUniquenameType
NAU_TM45040NAU_TM45040genetic_marker
NAU_TM45041NAU_TM45041genetic_marker
NAU_TM45042NAU_TM45042genetic_marker
NAU_TM45043NAU_TM45043genetic_marker
NAU_TM45044NAU_TM45044genetic_marker
NAU_TM45045NAU_TM45045genetic_marker
NAU_TM45046NAU_TM45046genetic_marker
NAU_TM45047NAU_TM45047genetic_marker
NAU_TM45048NAU_TM45048genetic_marker
NAU_TM45049NAU_TM45049genetic_marker
NAU_TM45050NAU_TM45050genetic_marker
NAU_TM45051NAU_TM45051genetic_marker
NAU_TM45052NAU_TM45052genetic_marker
NAU_TM45053NAU_TM45053genetic_marker
NAU_TM45054NAU_TM45054genetic_marker
NAU_TM45055NAU_TM45055genetic_marker
NAU_TM45056NAU_TM45056genetic_marker
NAU_TM45057NAU_TM45057genetic_marker
NAU_TM45058NAU_TM45058genetic_marker
NAU_TM45059NAU_TM45059genetic_marker
NAU_TM45060NAU_TM45060genetic_marker
NAU_TM45061NAU_TM45061genetic_marker
NAU_TM45062NAU_TM45062genetic_marker
NAU_TM45063NAU_TM45063genetic_marker
NAU_TM45064NAU_TM45064genetic_marker

Pages

Libraries
This publication contains information about 1 libraries:
Library NameUnique NameOrganism
NAU_CottonSNP80KNAU_CottonSNP80KGossypium hirsutum
Properties
Additional details for this publication include:
Property NameValue
DOI10.1186/s12864-017-4062-2
Journal AbbreviationBMC Genomics
KeywordsSingle nucleotide polymorphism (SNP), Array, Upland cotton, Genotyping identification, Genome-wide association studies (GWAS), Molecular breeding