High-density 80 K SNP array is a powerful tool for genotyping G. hirsutum accessions and genome analysis

Publication Overview
TitleHigh-density 80 K SNP array is a powerful tool for genotyping G. hirsutum accessions and genome analysis
AuthorsCaiping Cai, Guozhong Zhu, Tianzhen Zhang, and Wangzhen Guo
TypeJournal Article
Journal NameBMC Genomics
Volume18
Year2017
Page(s)654
CitationCai C., Zhu G., Zhang T., Guo W. High-density 80 K SNP array is a powerful tool for genotyping G. hirsutum accessions and genome analysis BMC Genomics 2017 18:654

Abstract

Background: High-throughput genotyping platforms play important roles in plant genomic studies. Cotton (Gossypium spp.) is the world’s important natural textile fiber and oil crop. Upland cotton accounts for more than 90% of the world’s cotton production, however, modern upland cotton cultivars have narrow genetic diversity. The amounts of genomic sequencing and re-sequencing data released make it possible to develop a high-quality single nucleotide polymorphism (SNP) array for intraspecific genotyping detection in cotton. Results: Here we report a high-throughput CottonSNP80K array and its utilization in genotyping detection in different cotton accessions. 82,259 SNP markers were selected from the re-sequencing data of 100 cotton cultivars and used to produce the array on the Illumina Infinium platform. 77,774 SNP loci (94.55%) were successfully synthesized on the array. Of them, 77,252 (99.33%) had call rates of >95% in 352 cotton accessions and 59,502 (76.51%) were polymorphic loci. Application tests using 22 cotton accessions with parent/F1 combinations or with similar genetic backgrounds showed that CottonSNP80K array had high genotyping accuracy, good repeatability, and wide applicability. Phylogenetic analysis of 312 cotton cultivars and landraces with wide geographical distribution showed that they could be classified into ten groups, irrelevant of their origins. We found that the different landraces were clustered in different subgroups, indicating that these landraces were major contributors to the development of different breeding populations of modern G. hirsutum cultivars in China. We integrated a total of 54,588 SNPs (MAFs >0.05) associated with 10 salt stress traits into 288 G. hirsutum accessions for genome-wide association studies (GWAS), and eight significant SNPs associated with three salt stress traits were detected. Conclusions: We developed CottonSNP80K array with high polymorphism to distinguish upland cotton accessions. Diverse application tests indicated that the CottonSNP80K play important roles in germplasm genotyping, variety verification, functional genomics studies, and molecular breeding in cotton. Keywords: Single nucleotide polymorphism (SNP), Array, Upland cotton, Genotyping identification, Genome-wide association studies (GWAS), Molecular breeding
Germplasm
This publication contains information about 302 stocks:
Stock NameGRIN IDSpeciesType
Xin Lu Zao 28Gossypium hirsutumaccession
Xin Lu Zhong 35Gossypium hirsutumaccession
Xin Qiu 1Gossypium hirsutumaccession
Yu Mian 9Gossypium hirsutumaccession
Yu Mian 18Gossypium hirsutumaccession
Lu Mian Yan 21Gossypium hirsutumaccession
Lu Mian Yan 36Gossypium hirsutumaccession
Ji Mian 228Gossypium hirsutumaccession
Ji Mian 958Gossypium hirsutumaccession
Lu Mian Yan 27Gossypium hirsutumaccession
Lu Mian Yan 29Gossypium hirsutumaccession
sGK791Gossypium hirsutumaccession
Zheng Nong Mian 4Gossypium hirsutumaccession
sGK958Gossypium hirsutumaccession
Yinrui361Gossypium hirsutumaccession
Ao Mian 618Gossypium hirsutumaccession
Chuang You Mian 9Gossypium hirsutumaccession
Fu Mian 289Gossypium hirsutumaccession
Guan Mian 4Gossypium hirsutumaccession
Han Mian 559Gossypium hirsutumaccession
Ji 3927Gossypium hirsutumaccession
Ji Mian 169Gossypium hirsutumaccession
Sheng Mian 1Gossypium hirsutumaccession
Xin Zhi 5Gossypium hirsutumaccession
Guo Xin Mian 9Gossypium hirsutumaccession

Pages

Features
This publication contains information about 77,774 features:
Feature NameUniquenameType
NAU_TM79672NAU_TM79672genetic_marker
NAU_TM79673NAU_TM79673genetic_marker
NAU_TM79674NAU_TM79674genetic_marker
NAU_TM79675NAU_TM79675genetic_marker
NAU_TM79676NAU_TM79676genetic_marker
NAU_TM79677NAU_TM79677genetic_marker
NAU_TM79678NAU_TM79678genetic_marker
NAU_TM79679NAU_TM79679genetic_marker
NAU_TM79680NAU_TM79680genetic_marker
NAU_TM79681NAU_TM79681genetic_marker
NAU_TM79682NAU_TM79682genetic_marker
NAU_TM79683NAU_TM79683genetic_marker
NAU_TM79684NAU_TM79684genetic_marker
NAU_TM79685NAU_TM79685genetic_marker
NAU_TM79686NAU_TM79686genetic_marker
NAU_TM79688NAU_TM79688genetic_marker
NAU_TM79689NAU_TM79689genetic_marker
NAU_TM79690NAU_TM79690genetic_marker
NAU_TM79691NAU_TM79691genetic_marker
NAU_TM79692NAU_TM79692genetic_marker
NAU_TM79693NAU_TM79693genetic_marker
NAU_TM79694NAU_TM79694genetic_marker
NAU_TM79695NAU_TM79695genetic_marker
NAU_TM79696NAU_TM79696genetic_marker
NAU_TM79697NAU_TM79697genetic_marker

Pages

Projects
This publication contains information about 1 projects:
Project NameDescription
Salt-stress-test_NAU-Guo-2017
Libraries
This publication contains information about 1 libraries:
Library NameUnique NameOrganism
NAU_CottonSNP80KNAU_CottonSNP80KGossypium hirsutum
Properties
Additional details for this publication include:
Property NameValue
DOI10.1186/s12864-017-4062-2
Journal AbbreviationBMC Genomics
KeywordsSingle nucleotide polymorphism (SNP), Array, Upland cotton, Genotyping identification, Genome-wide association studies (GWAS), Molecular breeding