Resequencing of 243 diploid cotton accessions based on an updated A genome identifies the genetic basis of key agronomic traits

Publication Overview
TitleResequencing of 243 diploid cotton accessions based on an updated A genome identifies the genetic basis of key agronomic traits
AuthorsDu X, Huang G, He S, Yang Z, Sun G, Ma X, Li N, Zhang X, Sun J, Liu M, Jia Y, Pan Z, Gong W, Liu Z, Zhu H, Ma L, Liu F, Yang D, Wang F, Fan W, Gong Q, Peng Z, Wang L, Wang X, Xu S, Shang H, Lu C, Zheng H, Huang S, Lin T, Zhu Y, Li F
TypeJournal Article
Journal NameNature genetics
Year2018
CitationDu X, Huang G, He S, Yang Z, Sun G, Ma X, Li N, Zhang X, Sun J, Liu M, Jia Y, Pan Z, Gong W, Liu Z, Zhu H, Ma L, Liu F, Yang D, Wang F, Fan W, Gong Q, Peng Z, Wang L, Wang X, Xu S, Shang H, Lu C, Zheng H, Huang S, Lin T, Zhu Y, Li F. Resequencing of 243 diploid cotton accessions based on an updated A genome identifies the genetic basis of key agronomic traits. Nature genetics. 2018 May 07.

Abstract

The ancestors of Gossypium arboreum and Gossypium herbaceum provided the A subgenome for the modern cultivated allotetraploid cotton. Here, we upgraded the G. arboreum genome assembly by integrating different technologies. We resequenced 243 G. arboreum and G. herbaceum accessions to generate a map of genome variations and found that they are equally diverged from Gossypium raimondii. Independent analysis suggested that Chinese G. arboreum originated in South China and was subsequently introduced to the Yangtze and Yellow River regions. Most accessions with domestication-related traits experienced geographic isolation. Genome-wide association study (GWAS) identified 98 significant peak associations for 11 agronomically important traits in G. arboreum. A nonsynonymous substitution (cysteine-to-arginine substitution) of GaKASIII seems to confer substantial fatty acid composition (C16:0 and C16:1) changes in cotton seeds. Resistance to fusarium wilt disease is associated with activation of GaGSTF9 expression. Our work represents a major step toward understanding the evolution of the A genome of cotton.

Features
This publication contains information about 25,394 features:
Feature NameUniquenameType
CRI-A2_SNP_Ga07_1916020CRI-A2_SNP_Ga07_1916020genetic_marker
CRI-A2_SNP_Ga07_1917026CRI-A2_SNP_Ga07_1917026genetic_marker
CRI-A2_SNP_Ga07_1997368CRI-A2_SNP_Ga07_1997368genetic_marker
CRI-A2_SNP_Ga07_2005486CRI-A2_SNP_Ga07_2005486genetic_marker
CRI-A2_INDEL_Ga07_2025662CRI-A2_INDEL_Ga07_2025662genetic_marker
CRI-A2_INDEL_Ga07_2025844CRI-A2_INDEL_Ga07_2025844genetic_marker
CRI-A2_SNP_Ga07_2026837CRI-A2_SNP_Ga07_2026837genetic_marker
CRI-A2_INDEL_Ga07_2028439CRI-A2_INDEL_Ga07_2028439genetic_marker
CRI-A2_INDEL_Ga07_2030657CRI-A2_INDEL_Ga07_2030657genetic_marker
CRI-A2_INDEL_Ga07_2070827CRI-A2_INDEL_Ga07_2070827genetic_marker
CRI-A2_INDEL_Ga07_2070857CRI-A2_INDEL_Ga07_2070857genetic_marker
CRI-A2_SNP_Ga07_2072164CRI-A2_SNP_Ga07_2072164genetic_marker
CRI-A2_SNP_Ga07_2084563CRI-A2_SNP_Ga07_2084563genetic_marker
CRI-A2_SNP_Ga07_2097571CRI-A2_SNP_Ga07_2097571genetic_marker
CRI-A2_SNP_Ga07_2158469CRI-A2_SNP_Ga07_2158469genetic_marker
CRI-A2_SNP_Ga07_2220969CRI-A2_SNP_Ga07_2220969genetic_marker
CRI-A2_SNP_Ga07_2234765CRI-A2_SNP_Ga07_2234765genetic_marker
CRI-A2_SNP_Ga07_2235669CRI-A2_SNP_Ga07_2235669genetic_marker
CRI-A2_INDEL_Ga07_2240244CRI-A2_INDEL_Ga07_2240244genetic_marker
CRI-A2_SNP_Ga07_2343301CRI-A2_SNP_Ga07_2343301genetic_marker
CRI-A2_SNP_Ga07_2383060CRI-A2_SNP_Ga07_2383060genetic_marker
CRI-A2_SNP_Ga07_2399945CRI-A2_SNP_Ga07_2399945genetic_marker
CRI-A2_SNP_Ga07_2450162CRI-A2_SNP_Ga07_2450162genetic_marker
CRI-A2_SNP_Ga07_2498434CRI-A2_SNP_Ga07_2498434genetic_marker
CRI-A2_INDEL_Ga07_2516442CRI-A2_INDEL_Ga07_2516442genetic_marker

Pages

Projects
This publication contains information about 2 projects:
Project NameDescription
A2-CRI_key-agronomics_CRI-Li-2018_GWAS
A2-CRI_key-agronomics_CRI-Li-2018_PHENO
Properties
Additional details for this publication include:
Property NameValue
DOI10.1038/s41588-018-0116-x
eISSN1546-1718
Elocation10.1038/s41588-018-0116-x
ISSN1546-1718
Journal AbbreviationNat. Genet.
Journal CountryUnited States
LanguageEnglish
Language Abbreng
Publication Date2018 May 07
Publication ModelPrint-Electronic
Publication TypeJournal Article
Published Location