New SSR Markers for Use in Cotton (Gossypium spp.) Improvement.

Publication Overview
TitleNew SSR Markers for Use in Cotton (Gossypium spp.) Improvement.
AuthorsXiao J; Wu K; Fang DD; Stelly DM; Yu JZ; Cantrell RG; Yu J
TypeJournal Article
Journal NameJournal of Cotton Science
Volume13
Year2009
Page(s)75 157
CitationXiao J, Wu K, Fang DD, Stelly DM, Yu J, Cantrell RG. New SSR Markers for Use in Cotton (Gossypium spp.) Improvement. Journal of cotton science. 2009; 13(2):75-157
Publication CodeJCS-13-75

Abstract

SSR markers, also known as microsatellite DNA markers, are very useful for saturation of the large and complex upland cotton (Gossypium hirsutum L.) genetic linkage map. Monsanto has invested heavily in development of cotton SSRs and has implemented molecular breeding technologies for the genetic improvement of cotton globally and the acceleration of the integration of biotechnology traits into the most elite upland cotton germplasm in the commercial pipeline. Genomic clones from microsatellite-enriched cotton DNA libraries were sequenced to identify SSR-containing target regions and SSR-containing EST collections were searched. PCR primer pairs were generated for 5,475 target sequences and utilized to amplify SSR marker loci which provide useable levels of polymorphism in interspecific and intraspecific genetic populations. Bioinformatics analysis of these sequences and primer pairs relative to SSR sequences already present in current public databases reveal that approximately 2,937 of these SSR primer pairs and target genomic sequences are unique and amplify about 4,000 unique marker loci in a tetraploid cotton genome depending on the germplasm analyzed. A subset of the Monsanto SSR markers were placed on a consensus genetic map along with a selected set of public anchor SSR markers (BNL and JESPR markers). Chromosome-marker bins, each 20 cM in size, were constructed on the genetic linkage map containing the two public marker sources. This generated 207 marker bins for a total of about 4,140cM which is approximately the size of the tetraploid cotton genetic map. These bins contain 945 unique Monsanto SSR marker loci and 615 public anchor SSR markers. In order to contribute to the expanding genomic resources for cotton research and improvement, Monsanto is facilitating the uploading of the unique SSR primer sequences, their respective target clone sequence, and chromosome bin designation (if known) to Cotton DB (http://cottondb.org/) and CMD (http://cottonmarker.org) databases. These will be available for general use in the cotton research community without restriction.
Features
This publication contains information about 5,155 features:
Feature NameUniquenameType
GQ394611GQ394611.1region
GQ394610GQ394610.1region
GQ394609GQ394609.1region
GQ394608GQ394608.1region
GQ394607GQ394607.1region
GQ394606GQ394606.1region
GQ394605GQ394605.1region
GQ394604GQ394604.1region
GQ394603GQ394603.1region
GQ394602GQ394602.1region
GQ394601GQ394601.1region
GQ394600GQ394600.1region
GQ394599GQ394599.1region
GQ394598GQ394598.1region
GQ394596GQ394596.1region
GQ394595GQ394595.1region
GQ394594GQ394594.1region
GQ394593GQ394593.1region
GQ394592GQ394592.1region
GQ394591GQ394591.1region
GQ394590GQ394590.1region
GQ394589GQ394589.1region
GQ394588GQ394588.1region
GQ394587GQ394587.1region
GQ394586GQ394586.1region

Pages

Featuremaps
This publication contains information about 1 maps:
Map Name
Monsanto SSR Bin Map, (2009)
Properties
Additional details for this publication include:
Property NameValue
Published LocationUnited States
Publication TypeJournal Article
eISSN1524-3303
pISSN1523-6919
URLhttps://pubag.nal.usda.gov/download/32314/pdf
Language Abbreng
Publication Date2009
Journal AliasThe journal of cotton science
Publication Model[electronic resource].
Journal CodeJCS
Publication CodeJCS-13-75
LanguageEnglish
Keywordsmicrosatellite repeats, genetic markers, DNA libraries, expressed sequence tags, DNA primers, linkage groups, chromosome mapping, genetic polymorphism, genetic improvement, plant genetic resources, chromosome bin maps, chromosome mapping; linkage groups; genetic polymorphism; plant genetic resources; genetic improvement; DNA primers; microsatellite repeats; Gossypium hirsutum; genetic markers; expressed sequence tags; DNA libraries