CottonGen Citations 2019

 Peer-reviewed papers/books citing CottonGen in 2019 (93) with links to publications. 
 

  1. Yu, J. Z., & Gervers, K. A. (2019). Genomic analysis of marker-associated fiber development genes in upland cotton (Gossypium hirsutum L). Euphytica, 215, 1-10.
    Cited By
  2. Xing, H., Yuan, Y., Zhang, H., Wang, L., Mao, L., Tao, J., ... & Sun, X. Z. (2019). Multi-environments and multi-models association mapping identified candidate genes of lint percentage and seed index in Gossypium hirsutum L. Molecular Breeding, 39, 1-16.
    Cited By
  3. Yuan, Y., Zhang, H., Wang, L., Xing, H., Mao, L., Tao, J., ... & Sun, X. Z. (2019). Candidate quantitative trait loci and genes for fiber quality in Gossypium hirsutum L. detected using single-and multi-locus association mapping. Industrial Crops and Products, 134, 356-369.
    Cited By
  4. Chow, C. N., Lee, T. Y., Hung, Y. C., Li, G. Z., Tseng, K. C., Liu, Y. H., ... & Chang, W. C. (2019). PlantPAN3. 0: a new and updated resource for reconstructing transcriptional regulatory networks from ChIP-seq experiments in plants. Nucleic acids research, 47(D1), D1155-D1163.
    Cited By
  5. Zheng, Y., Wu, S., Bai, Y., Sun, H., Jiao, C., Guo, S., ... & Fei, Z. (2019). Cucurbit Genomics Database (CuGenDB): a central portal for comparative and functional genomics of cucurbit crops. Nucleic acids research, 47(D1), D1128-D1136.
    Cited By
  6. Ijaz, B., Zhao, N., Kong, J., & Hua, J. (2019). Fiber quality improvement in upland cotton (Gossypium hirsutum L.): quantitative trait loci mapping and marker assisted selection application. Frontiers in plant science, 10, 1585.
    Cited By
  7. Wang, K., Wang, D., Zheng, X., Qin, A., Zhou, J., Guo, B., ... & Zhu, Y. (2019). Multi-strategic RNA-seq analysis reveals a high-resolution transcriptional landscape in cotton. Nature communications, 10(1), 4714.
    Cited By
  8. Janga, M. R., Pandeya, D., Campbell, L. M., Konganti, K., Villafuerte, S. T., Puckhaber, L., ... & Rathore, K. S. (2019). Genes regulating gland development in the cotton plant. Plant biotechnology journal, 17(6), 1142-1153.
    Cited By
  9. Zou, X., Liu, A., Zhang, Z., Ge, Q., Fan, S., Gong, W., ... & Shang, H. (2019). Co-expression network analysis and hub gene selection for high-quality fiber in upland cotton (Gossypium hirsutum) using RNA sequencing analysis. Genes, 10(2), 119.
    Cited By
  10. Liu, W., Chen, L., Zhang, S., Hu, F., Wang, Z., Lyu, J., ... & Wang, W. (2019). Decrease of gene expression diversity during domestication of animals and plants. BMC Evolutionary Biology, 19, 1-11.
    Cited By
  11. Sun, H., Wei, H., Wang, H., Hao, P., Gu, L., Liu, G., ... & Yu, S. (2019). Genome-wide identification and expression analysis of the BURP domain-containing genes in Gossypium hirsutum. BMC genomics, 20(1), 1-19.
    Cited By
  12. Li, W., Zhang, D., Zhu, G., Mi, X., & Guo, W. (2019). Combining genome-wide and transcriptome-wide analyses reveal the evolutionary conservation and functional diversity of aquaporins in cotton. BMC genomics, 20(1), 1-17.
    Cited By
  13. Song, Y., Li, L., Yang, Z., Zhao, G., Zhang, X., Wang, L., ... & Li, F. (2019). Target of rapamycin (TOR) regulates the expression of lncRNAs in response to abiotic stresses in cotton. Frontiers in Genetics, 9, 690.
    Cited By
  14. Cui, Y., Ma, J., Liu, G., Wang, N., Pei, W., Wu, M., ... & Yu, J. (2019). Genome-wide identification, sequence variation, and expression of the glycerol-3-phosphate acyltransferase (GPAT) gene family in Gossypium. Frontiers in Genetics, 10, 116.
    Cited By
  15. Ma, L., Wang, Y., Ijaz, B., & Hua, J. (2019). Cumulative and different genetic effects contributed to yield heterosis using maternal and paternal backcross populations in Upland cotton. Scientific Reports, 9(1), 3984.
    Cited By
  16. Zhao, Y., Guo, A., Wang, Y., & Hua, J. (2019). Evolution of PEPC gene family in Gossypium reveals functional diversification and GhPEPC genes responding to abiotic stresses. Gene, 698, 61-71.
    Cited By
  17. Wu, M., Li, L., Liu, G., Li, X., Pei, W., Li, X., ... & Yu, J. (2019). Differentially expressed genes between two groups of backcross inbred lines differing in fiber length developed from Upland× Pima cotton. Molecular biology reports, 46, 1199-1212.
    Cited By
  18. Wang, Y., Zeng, Z., Li, F., Yang, X., Gao, X., Ma, Y., ... & Liu, T. (2019). A genomic resource derived from the integration of genome sequences, expressed transcripts and genetic markers in ramie. BMC genomics, 20, 1-7.
    Cited By
  19. Kim, H. J., Thyssen, G. N., Song, X., Delhom, C. D., & Liu, Y. (2019). Functional divergence of cellulose synthase orthologs in between wild Gossypium raimondii and domesticated G. arboreum diploid cotton species. Cellulose, 26, 9483-9501.
    Cited By
  20. Buble, K., Jung, S., Humann, J. L., Yu, J., Cheng, C. H., Lee, T., ... & Main, D. (2019). Tripal MapViewer: A tool for interactive visualization and comparison of genetic maps. Database, 2019.
    Cited By
  21. Guo, Y., Peng, Z., Liu, J., Yuan, N., Wang, Z., & Du, J. (2019). Systematic Comparisons of Positively Selected Genes between Gossypium arboreum and Gossypium raimondii Genomes. Current Bioinformatics, 14(7), 581-590.
    Cited By
  22. Zhao, Y., Yang, Z., Ding, Y., Liu, L., Han, X., Zhan, J., ... & Ge, X. (2019). Over-expression of an R2R3 MYB Gene, GhMYB73, increases tolerance to salt stress in transgenic Arabidopsis. Plant science, 286, 28-36.
    Cited By
  23. Diao, Y., Zhan, J., Zhao, Y., Liu, L., Liu, P., Wei, X., ... & Ge, X. (2019). GhTIE1 regulates branching through modulating the transcriptional activity of TCPs in cotton and Arabidopsis. Frontiers in Plant Science, 10, 1348.
    Cited By
  24. Qin, Y., Sun, H., Hao, P., Wang, H., Wang, C., Ma, L., ... & Yu, S. (2019). Transcriptome analysis reveals differences in the mechanisms of fiber initiation and elongation between long-and short-fiber cotton (Gossypium hirsutum L.) lines. BMC genomics, 20(1), 1-16.
    Cited By
  25. Dai, P., Miao, Y., He, S., Pan, Z., Jia, Y., Cai, Y., ... & Du, X. (2019). Identifying favorable alleles for improving key agronomic traits in upland cotton. BMC plant biology, 19(1), 1-11.
    Cited By
  26. Yu, X., Liu, H., Sang, N., Li, Y., Zhang, T., Sun, J., & Huang, X. (2019). Identification of cotton MOTHER OF FT AND TFL1 homologs, GhMFT1 and GhMFT2, involved in seed germination. PLoS One, 14(4), e0215771.
    Cited By
  27. Li, X., Sun, Y., Liu, N., Wang, P., Pei, Y., Liu, D., ... & Hou, Y. (2019). Enhanced resistance to Verticillium dahliae mediated by an F-box protein GhACIF1 from Gossypium hirsutum. Plant Science, 284, 127-134.
    Cited By
  28. Imran, M., Shafiq, S., Farooq, M. A., Naeem, M. K., Widemann, E., Bakhsh, A., ... & Wang, R. R. C. (2019). Comparative genome-wide analysis and expression profiling of histone acetyltransferase (HAT) gene family in response to hormonal applications, metal and abiotic stresses in cotton. International journal of molecular sciences, 20(21), 5311.
    Cited By
  29. He, P., Wu, S., Jiang, Y., Zhang, L., Tang, M., Xiao, G., & Yu, J. (2019). GhYGL1d, a pentatricopeptide repeat protein, is required for chloroplast development in cotton. BMC plant biology, 19, 1-12.
    Cited By
  30. He, P., Yang, Y., Wang, Z., Zhao, P., Yuan, Y., Zhang, L., ... & Xiao, G. (2019). Comprehensive analyses of ZFP gene family and characterization of expression profiles during plant hormone response in cotton. BMC plant biology, 19(1), 1-13.
    Cited By
  31. Eum, S. M., Kim, S. Y., Hong, J. S., Roy, N. S., Choi, S., Paik, J., ... & Na, J. K. (2019). Transcriptome analysis and development of SSR markers of ethnobotanical plant Sterculia lanceolata. Tree Genetics & Genomes, 15, 1-12.
    Cited By
  32. Bakhsh, A., Rehman, M., Salman, S., & Ullah, R. (2019). Evaluation of cotton genotypes for seed cotton yield and fiber quality traits under water stress and non-stress conditions. Sarhad Journal of Agriculture, 35(1), 161-170.
    Cited By
  33. Li, S. Q., Liu, A. Y., Kong, L. L., Gong, J. W., Li, J. W., Gong, W. K., ... & Yuan, Y. L. (2019). QTL mapping and genetic effect of chromosome segment substitution lines with excellent fiber quality from Gossypium hirsutum× Gossypium barbadense. Molecular Genetics and Genomics, 294, 1123-1136.
    Cited By
  34. Han, M., Lu, X., Yu, J., Chen, X., Wang, X., Malik, W. A., ... & Ye, W. (2019). Transcriptome analysis reveals cotton (Gossypium hirsutum) genes that are differentially expressed in cadmium stress tolerance. International journal of molecular sciences, 20(6), 1479.
    Cited By
  35. Mu, C., Zhou, L., Shan, L., Li, F., & Li, Z. (2019). Phosphatase GhDs PTP 3a interacts with annexin protein Gh ANN 8b to reversely regulate salt tolerance in cotton (Gossypium spp.). New Phytologist, 223(4), 1856-1872.
    Cited By
  36. Naqvi, R. Z., Zaidi, S. S. E. A., Mukhtar, M. S., Amin, I., Mishra, B., Strickler, S., ... & Mansoor, S. (2019). Transcriptomic analysis of cultivated cotton Gossypium hirsutum provides insights into host responses upon whitefly-mediated transmission of cotton leaf curl disease. PloS one, 14(2), e0210011.
    Cited By
  37. Zhang, Z., Wang, P., Luo, X., Yang, C., Tang, Y., Wang, Z., ... & Wu, J. (2019). Cotton plant defence against a fungal pathogen is enhanced by expanding BLADE-ON-PETIOLE1 expression beyond lateral-organ boundaries. Communications biology, 2(1), 238.
    Cited By
  38. Ramesh, U. M., Methre, R., Kumar, N. V. M., Katageri, I. S., Gowda, S. A., Adiger, S., ... & Lachagari, V. B. (2019). Genome mapping and molecular markers identification for yield, yield component and fibre quality traits in tetraploid cotton. Plant Breeding, 138(6), 880-896.
    Cited By
  39. Kumar, N. M., Katageri, I. S., Gowda, S. A., Adiger, S., Yadava, S. K., & Lachagari, V. R. (2019). 63K SNP chip based linkage mapping and QTL analysis for fibre quality and yield component traits in Gossypium barbadense L. cotton. Euphytica, 215, 1-16.
    Cited By
  40. Hu, Y., Chen, J., Fang, L., Zhang, Z., Ma, W., Niu, Y., ... & Zhang, T. (2019). Gossypium barbadense and Gossypium hirsutum genomes provide insights into the origin and evolution of allotetraploid cotton. Nature genetics, 51(4), 739-748.
    Cited By
  41. Sun, S., Xiong, X. P., Zhu, Q., Li, Y. J., & Sun, J. (2019). Transcriptome sequencing and metabolome analysis reveal genes involved in pigmentation of green-colored cotton fibers. International journal of molecular sciences, 20(19), 4838.
    Cited By
  42. Tang, Y., Zhang, Z., Lei, Y., Hu, G., Liu, J., Hao, M., ... & Wu, J. (2019). Cotton WATs modulate SA biosynthesis and local lignin deposition participating in plant resistance against Verticillium dahliae. Frontiers in Plant Science, 10, 526.
    Cited By
  43. Zhang, J., Yang, Z., Feng, P., Zhong, X., Ma, Q., Su, Q., ... & Yang, Y. (2019). Identification and the potential roles of long non-coding RNAs in cotton leaves damaged by Aphis gossypii. Plant Growth Regulation, 88, 215-225.
    Cited By
  44. Wang, M., Tu, L., Yuan, D., Zhu, D., Shen, C., Li, J., ... & Zhang, X. (2019). Reference genome sequences of two cultivated allotetraploid cottons, Gossypium hirsutum and Gossypium barbadense. Nature genetics, 51(2), 224-229.
    Cited By
  45. Liu, F., Ma, L., Wang, Y., Li, Y., Zhang, X., Xue, F., ... & Sun, J. (2019). GhFAD2–3 is required for anther development in Gossypium hirsutum. BMC plant biology, 19(1), 1-17.
    Cited By
  46. Liu, W., Zhang, Z., Zhu, W., Ren, Z., Jia, L., Li, W., & Ma, Z. (2019). Evolutionary conservation and divergence of genes encoding 3-hydroxy-3-methylglutaryl coenzyme A synthase in the allotetraploid cotton species Gossypium hirsutum. Cells, 8(5), 412.
    Cited By
  47. Liu, X., Wu, X., Sun, C., & Rong, J. (2019). Identification and expression profiling of the Regulator of Chromosome Condensation 1 (RCC1) gene family in Gossypium Hirsutum L. under abiotic stress and hormone treatments. International Journal of Molecular Sciences, 20(7), 1727.
    Cited By
  48. Kumar, P., Singh, R., Lubbers, E. L., Shen, X., Paterson, A. H., Campbell, B. T., ... & Chee, P. W. (2019). Genetic evaluation of exotic chromatins from two obsolete interspecific introgression lines of upland cotton for fiber quality improvement. Crop Science, 59(3), 1073-1084.
    Cited By
  49. Huang, J., Guo, Y., Sun, Q., Zeng, W., Li, J., Li, X., & Xu, W. (2019). Genome-wide identification of R2R3-MYB transcription factors regulating secondary cell wall thickening in cotton fiber development. Plant and Cell Physiology, 60(3), 687-701.
    Cited By
  50. Guo, H., Li, S., Min, W., Ye, J., & Hou, Z. (2019). Ionomic and transcriptomic analyses of two cotton cultivars (Gossypium hirsutum L.) provide insights into the ion balance mechanism of cotton under salt stress. PLoS One, 14(12), e0226776.
    Cited By
  51. Zhang, B., Zhang, X., Zhang, M., Guo, L., Qi, T., Wang, H., ... & Wu, J. (2019). Transcriptome analysis implicates involvement of long noncoding RNAs in cytoplasmic male sterility and fertility restoration in cotton. International Journal of Molecular Sciences, 20(22), 5530.
    Cited By
  52. Udall, J. A., Long, E., Ramaraj, T., Conover, J. L., Yuan, D., Grover, C. E., ... & Wendel, J. F. (2019). The genome sequence of Gossypioides kirkii illustrates a descending dysploidy in plants. Frontiers in plant science, 10, 1541.
    Cited By
  53. Cai, X., Magwanga, R. O., Xu, Y., Zhou, Z., Wang, X., Hou, Y., ... & Wang, K. (2019). Comparative transcriptome, physiological and biochemical analyses reveal response mechanism mediated by CBF4 and ICE2 in enhancing cold stress tolerance in Gossypium thurberi. AoB Plants, 11(6), plz045.
    Cited By
  54. Wang, P., Zhang, S., Qiao, J., Sun, Q., Shi, Q., Cai, C., ... & Cai, Y. (2019). Functional analysis of the GbDWARF14 gene associated with branching development in cotton. PeerJ, 7, e6901.
    Cited By
  55. Li, J., Manghwar, H., Sun, L., Wang, P., Wang, G., Sheng, H., ... & Zhang, X. (2019). Whole genome sequencing reveals rare off‐target mutations and considerable inherent genetic or/and somaclonal variations in CRISPR/Cas9‐edited cotton plants. Plant biotechnology journal, 17(5), 858-868.
    Cited By
  56. Xiao, X., Lu, Q., Liu, R., Gong, J., Gong, W., Liu, A., ... & Yuan, Y. (2019). Genome-wide characterization of the UDP-glycosyltransferase gene family in upland cotton. 3 Biotech, 9, 1-12.
    Cited By
  57. Zhang, Z., Liu, W., Ma, Z., Zhu, W., & Jia, L. (2019). Transcriptional characterization and response to defense elicitors of mevalonate pathway genes in cotton (Gossypium arboreum L.). PeerJ, 7, e8123.
    Cited By
  58. Li, Z. K., Chen, B., Li, X. X., Wang, J. P., Zhang, Y., Wang, X. F., ... & Ma, Z. Y. (2019). A newly identified cluster of glutathione S‐transferase genes provides Verticillium wilt resistance in cotton. The Plant Journal, 98(2), 213-227.
    Cited By
  59. Wang, Y., Li, G., Guo, X., Sun, R., Dong, T., Yang, Q., ... & Li, C. (2019). Dissecting the genetic architecture of seed-cotton and lint yields in Upland cotton using genome-wide association mapping. Breeding Science, 69(4), 611-620.
    Cited By
  60. Ma, Q., Wang, N., Hao, P., Sun, H., Wang, C., Ma, L., ... & Yu, S. (2019). Genome-wide identification and characterization of TALE superfamily genes in cotton reveals their functions in regulating secondary cell wall biosynthesis. BMC plant biology, 19(1), 1-20.
    Cited By
  61. Lei, K., Liu, A., Fan, S., Peng, H., Zou, X., Zhen, Z., ... & Shang, H. (2019). Identification of TPX2 gene family in upland cotton and its functional analysis in cotton fiber development. Genes, 10(7), 508.
    Cited By
  62. Li, P. T., Rashid, M. H. O., Chen, T. T., Lu, Q. W., Ge, Q., Gong, W. K., ... & Yuan, Y. L. (2019). Transcriptomic and biochemical analysis of upland cotton (Gossypium hirsutum) and a chromosome segment substitution line from G. hirsutum× G. barbadense in response to Verticillium dahliae infection. BMC Plant Biology, 19, 1-24.
    Cited By
  63. Grover, C. E., Arick, M. A., Thrash, A., Conover, J. L., Sanders, W. S., Peterson, D. G., ... & Wendel, J. F. (2019). Insights into the evolution of the new world diploid cottons (Gossypium, Subgenus Houzingenia) based on genome sequencing. Genome biology and evolution, 11(1), 53-71.
    Cited By
  64. Zhang, S., Tian, Z., Li, H., Guo, Y., Zhang, Y., Roberts, J. A., ... & Miao, Y. (2019). Genome-wide analysis and characterization of F-box gene family in Gossypium hirsutum L. BMC genomics, 20, 1-16.
    Cited By
  65. Qanmber, G., Ali, F., Lu, L., Mo, H., Ma, S., Wang, Z., & Yang, Z. (2019). Identification of histone H3 (HH3) genes in Gossypium hirsutum revealed diverse expression during ovule development and stress responses. Genes, 10(5), 355.
    Cited By
  66. Zang, X., Geng, X., Ma, L., Wang, N., Pei, W., Wu, M., ... & Yu, J. (2019). A genome-wide analysis of the phospholipid: diacylglycerol acyltransferase gene family in Gossypium. BMC genomics, 20, 1-10.
    Cited By
  67. Salih, H., Odongo, M. R., Gong, W., He, S., & Du, X. (2019). Genome-wide analysis of cotton C2H2-zinc finger transcription factor family and their expression analysis during fiber development. BMC plant biology, 19(1), 1-17.
    Cited By
  68. Miao, Y., Xu, L., He, X., Zhang, L., Shaban, M., Zhang, X., & Zhu, L. (2019). Suppression of tryptophan synthase activates cotton immunity by triggering cell death via promoting SA synthesis. The Plant Journal, 98(2), 329-345.
    Cited By
  69. Zhang, C., Li, L., Liu, Q., Gu, L., Huang, J., Wei, H., ... & Yu, S. (2019). Identification of loci and candidate genes responsible for fiber length in upland cotton (Gossypium hirsutum L.) via association mapping and linkage analyses. Frontiers in plant science, 10, 53.
    Cited By
  70. Lu, T., Zhang, G., Wang, Y., He, S., Sun, L., & Hao, F. (2019). Genome-wide characterization and expression analysis of PP2CA family members in response to ABA and osmotic stress in Gossypium. PeerJ, 7, e7105.
    Cited By
  71. Xu, Y., Magwanga, R. O., Cai, X., Zhou, Z., Wang, X., Wang, Y., ... & Liu, F. (2019). Deep transcriptome analysis reveals reactive oxygen species (ROS) network evolution, response to abiotic stress, and regulation of fiber development in cotton. International journal of molecular sciences, 20(8), 1863.
    Cited By
  72. Wang, M., Tan, Y., Cai, C., & Zhang, B. (2019). Identification and expression analysis of phosphatidy ethanolamine-binding protein (PEBP) gene family in cotton. Genomics, 111(6), 1373-1380.
    Cited By
  73. Liu, Z., Fu, M., Li, H., Chen, Y., Wang, L., & Liu, R. (2019). Systematic analysis of NAC transcription factors in Gossypium barbadense uncovers their roles in response to Verticillium wilt. PeerJ, 7, e7995.
    Cited By
  74. Yang, X., Xu, Y., Yang, F., Magwanga, R. O., Cai, X., Wang, X., ... & Zhou, Z. (2019). Genome-wide identification of OSCA gene family and their potential function in the regulation of dehydration and salt stress in Gossypium hirsutum. Journal of Cotton Research, 2, 1-18.
    Cited By
  75. Chen, Q., Chen, Q. J., Sun, G. Q., Zheng, K., Yao, Z. P., Han, Y. H., ... & Qu, Y. Y. (2019). Genome-wide identification of cyclophilin gene family in cotton and expression analysis of the fibre development in Gossypium barbadense. International Journal of Molecular Sciences, 20(2), 349.
    Cited By
  76. Wang, N., Ma, Q., Ma, J., Pei, W., Liu, G., Cui, Y., ... & Yu, J. (2019). A comparative genome-wide analysis of the R2R3-MYB gene family among four Gossypium species and their sequence variation and association with fiber quality traits in an interspecific G. hirsutum× G. barbadense population. Frontiers in Genetics, 10, 741.
    Cited By
  77. Gao, J., Shen, L., Yuan, J., Zheng, H., Su, Q., Yang, W., ... & Sun, Y. (2019). Functional analysis of GhCHS, GhANR and GhLAR in colored fiber formation of Gossypium hirsutum L. BMC plant biology, 19, 1-18.
    Cited By
  78. Moura, M. O., Fausto, A. K. S., Fanelli, A., Guedes, F. A. D. F., Silva, T. D. F., Romanel, E., & Vaslin, M. F. (2019). Genome-wide identification of the Dicer-like family in cotton and analysis of the DCL expression modulation in response to biotic stress in two contrasting commercial cultivars. BMC plant biology, 19(1), 1-17.
    Cited By
  79. Zhang, K., Kuraparthy, V., Fang, H., Zhu, L., Sood, S., & Jones, D. C. (2019). High-density linkage map construction and QTL analyses for fiber quality, yield and morphological traits using CottonSNP63K array in upland cotton (Gossypium hirsutum L.). BMC genomics, 20(1), 1-26.
    Cited By
  80. Liu, B., Sun, Y., Xue, J., Mao, X., Jia, X., & Li, R. (2019). Stearoyl-ACP Δ9 desaturase 6 and 8 (GhA-SAD6 and GhD-SAD8) are responsible for biosynthesis of palmitoleic acid specifically in developing endosperm of upland cotton seeds. Frontiers in Plant Science, 10, 703.
    Cited By
  81. Li, Y., Qin, T., Wei, C., Sun, J., Dong, T., Zhou, R., ... & Wang, Q. (2019). Using transcriptome analysis to screen for key genes and pathways related to cytoplasmic male sterility in cotton (Gossypium hirsutum L.). International Journal of Molecular Sciences, 20(20), 5120.
    Cited By
  82. Qanmber, G., Lu, L., Liu, Z., Yu, D., Zhou, K., Huo, P., ... & Yang, Z. (2019). Genome-wide identification of GhAAI genes reveals that GhAAI66 triggers a phase transition to induce early flowering. Journal of experimental botany, 70(18), 4721-4736.
    Cited By
  83. Wang, Y., Wang, Y., Li, B., Xiong, C., Eneji, A. E., Zhang, M., ... & Li, Z. (2019). The cotton high-affinity K+ transporter, GhHAK5a, is essential for shoot regulation of K+ uptake in root under potassium deficiency. Plant and Cell Physiology, 60(4), 888-899.
    Cited By
  84. Korani, W., Clevenger, J. P., Chu, Y., & Ozias‐Akins, P. (2019). Machine learning as an effective method for identifying true single nucleotide polymorphisms in polyploid plants. The Plant Genome, 12(1), 180023.
    Cited By
  85. Sun, Y. C., Sheng, S., Fan, T. F., Liu, L., Ke, J., Wang, D. B., ... & Cao, F. Q. (2019). Molecular identification and functional characterization of GhAMT1. 3 in ammonium transport with a high affinity from cotton (Gossypium hirsutum L.). Physiologia Plantarum, 167(2), 217-231.
    Cited By
  86. MIAO, Y., ZHU, L., & ZHANG, X. (2019). Down regulation of cotton GbTRP1 leads to accumulation of anthranilates and confers resistance to Verticillium dahliae. Journal of Cotton Research, 2(1), 1-12.
    Cited By
  87. Lu, Y., Chen, W., Zhao, L., Yao, J., Li, Y., Yang, W., ... & Sun, J. (2019). Different divergence events for three pairs of PEBPs in Gossypium as implied by evolutionary analysis. Genes & genomics, 41, 445-458.
    Cited By
  88. Luo, Z., Kong, X., Zhang, Y., Li, W., Zhang, D., Dai, J., ... & Dong, H. (2019). Leaf-derived jasmonate mediates water uptake from hydrated cotton roots under partial root-zone irrigation. Plant physiology, 180(3), 1660-1676.
    Cited By
  89. Shazadee, H., Khan, N., Wang, J., Wang, C., Zeng, J., Huang, Z., & Wang, X. (2019). Identification and expression profiling of protein phosphatases (PP2C) gene family in Gossypium hirsutum L. International journal of molecular sciences, 20(6), 1395.
    Cited By
  90. Mo, H., Wang, L., Ma, S., Yu, D., Lu, L., Yang, Z., ... & Li, F. (2019). Transcriptome profiling of Gossypium arboreum during fiber initiation and the genome-wide identification of trihelix transcription factors. Gene, 709, 36-47.
    Cited By
  91. Han, L. B., Li, Y. B., Wang, F. X., Wang, W. Y., Liu, J., Wu, J. H., ... & Xia, G. X. (2019). The cotton apoplastic protein CRR1 stabilizes chitinase 28 to facilitate defense against the fungal pathogen Verticillium dahliae. The Plant Cell, 31(2), 520-536.
    Cited By
  92. Qanmber, G., Liu, J., Yu, D., Liu, Z., Lu, L., Mo, H., ... & Yang, Z. (2019). Genome-wide identification and characterization of the PERK gene family in Gossypium hirsutum reveals gene duplication and functional divergence. International journal of molecular sciences, 20(7), 1750.
    Cited By
  93. Zhang, S., Xu, Z., Sun, H., Sun, L., Shaban, M., Yang, X., & Zhu, L. (2019). Genome-wide identification of papain-like cysteine proteases in Gossypium hirsutum and functional characterization in response to Verticillium dahliae. Frontiers in plant science, 10, 134.
    Cited By