2022 CottonGen Citations

Peer-reviewed papers/books citing CottonGen in 2022 (138) with links to publications. 
 

  1. Zhao, N., Wang, W., Jiang, K., Grover, C. E., Cheng, C., Pan, Z., ... & Hua, J. (2022). A calmodulin-like gene (GbCML7) for fiber strength and yield improvement identified by resequencing core accessions of a pedigree in Gossypium barbadense. Frontiers in Plant Science, 12, 815648.
    Cited By
  2. Chen, Y., Feng, J., Qu, Y., Zhang, J., Zhang, L., Liang, D., ... & Huang, J. (2022). Genome-wide identification and functional analysis of class III peroxidases in Gossypium hirsutum. PeerJ, 10, e13635.
    Cited By
  3. Cao, J., Huang, C., Liu, J. E., Li, C., Liu, X., Zheng, Z., ... & Chen, Z. (2022). Comparative Genomics and Functional Studies of Putative m6A Methyltransferase (METTL) Genes in Cotton. International Journal of Molecular Sciences, 23(22), 14111.
    Cited By
  4. Miao, Z., Zhang, T., Xie, B., Qi, Y., & Ma, C. (2022). Evolutionary implications of the RNA N 6-methyladenosine methylome in plants. Molecular Biology and Evolution, 39(1), msab299.
    Cited By
  5. Feng, Z., Li, L., Tang, M., Liu, Q., Ji, Z., Sun, D., ... & Yu, S. (2022). Detection of stable elite haplotypes and potential candidate genes of boll weight across multiple environments via GWAS in upland cotton. Frontiers in Plant Science, 13, 929168.
    Cited By
  6. Wu, N., Li, W. J., Chen, C., Zhao, Y. P., & Hou, Y. X. (2022). Analysis of the PRA1 genes in cotton identifies the role of GhPRA1. B1-1A in Verticillium dahliae resistance. Genes, 13(5), 765.
    Cited By
  7. Shao, D., Zhu, Q. H., Liang, Q., Wang, X., Li, Y., Sun, Y., ... & Sun, J. (2022). Transcriptome analysis reveals differences in anthocyanin accumulation in cotton (Gossypium hirsutum L.) induced by red and blue light. Frontiers in Plant Science, 13, 788828.
    Cited By
  8. Aslam, M. Q., Naqvi, R. Z., Zaidi, S. S. E. A., Asif, M., Akhter, K. P., Scheffler, B. E., ... & Mansoor, S. (2022). Analysis of a tetraploid cotton line Mac7 transcriptome reveals mechanisms underlying resistance against the whitefly Bemisia tabaci. Gene, 820, 146200.
    Cited By
  9. Li, W. J., Wu, N., Chen, C., Zhao, Y. P., & Hou, Y. X. (2022). Identification and expression analysis of arabinogalactan protein genes in cotton reveal the function of GhAGP15 in Verticillium dahliae resistance. Gene, 822, 146336.
    Cited By
  10. Malik, W. A., Afzal, M., Chen, X., Cui, R., Lu, X., Wang, S., ... & Ye, W. (2022). Systematic analysis and comparison of ABC proteins superfamily confer structural, functional and evolutionary insights into four cotton species. Industrial Crops and Products, 177, 114433.
    Cited By
  11. Gowda, S. A., Katageri, I. S., Patil, R. S., Kumar, P. S., Tiwari, G. J., Jena, S. N., & Sawant, S. V. (2022). 63 K and 50 K SNP array based high-density genetic mapping and QTL analysis for productivity and fiber quality traits in cotton. Euphytica, 218(7), 93.
    Cited By
  12. Cao, J., Huang, C., Liu, J. E., Li, C., Liu, X., Zheng, Z., ... & Chen, Z. (2022). Comparative Genomics and Functional Studies of Putative m6A Methyltransferase (METTL) Genes in Cotton. International Journal of Molecular Sciences, 23(22), 14111.
    Cited By
  13. Tan, Y. C., Kumar, A. U., Wong, Y. P., & Ling, A. P. K. (2022). Bioinformatics approaches and applications in plant biotechnology. Journal of Genetic Engineering and Biotechnology, 20(1), 1-13.
    Cited By
  14. Zhang, R., Shen, C., Zhu, D., Le, Y., Wang, N., Li, Y., ... & Lin, Z. (2022). Fine-mapping and candidate gene analysis of qFL-c10-1 controlling fiber length in upland cotton (Gossypium hirsutum L.). Theoretical and Applied Genetics, 135(12), 4483-4494.
    Cited By
  15. Morales, K. Y., Bridgeland, A. H., Hake, K. D., Udall, J. A., Thomson, M. J., & Yu, J. Z. (2022). Homology-based identification of candidate genes for male sterility editing in upland cotton (Gossypium hirsutum L.). Frontiers in Plant Science, 13, 1006264.
    Cited By
  16. Kushanov, F. N., Komilov, D. J., Turaev, O. S., Ernazarova, D. K., Amanboyeva, R. S., Gapparov, B. M., & Yu, J. Z. (2022). Genetic Analysis of Mutagenesis That Induces the Photoperiod Insensitivity of Wild Cotton Gossypium hirsutum Subsp. purpurascens. Plants, 11(22), 3012.
    Cited By
  17. Wu, J., Mao, L., Tao, J., Wang, X., Zhang, H., Xin, M., ... & Sun, X. (2022). Dynamic Quantitative Trait Loci Mapping for Plant Height in Recombinant Inbred Line Population of Upland Cotton. Frontiers in Plant Science, 13, 914140.
    Cited By
  18. Li, Y., Zhu, S., Yao, J., Fang, S., Li, T., Li, B., ... & Zhang, Y. (2022). Genome-wide Characterization of the JmjC Domain-Containing Histone Demethylase Gene Family Reveals GhJMJ24 and GhJMJ49 Involving in Somatic Embryogenesis Process in Cotton. Frontiers in Molecular Biosciences, 9, 888983.
    Cited By
  19. Boopathi, N. M., Tiwari, G. J., Jena, S. N., Nandhini, K., Sri Subalakhshmi, V. K. I., Shyamala, P., ... & Rajeswari, S. (2022). Identification of Stable and Multiple Environment Interaction QTLs and Candidate Genes for Fiber Productive Traits Under Irrigated and Water Stress Conditions Using Intraspecific RILs of Gossypium hirsutum var. MCU5 X TCH1218. Frontiers in Plant Science, 13, 851504.
    Cited By
  20. Rolling, W. R., Senalik, D., Iorizzo, M., Ellison, S., Van Deynze, A., & Simon, P. W. (2022). CarrotOmics: a genetics and comparative genomics database for carrot (Daucus carota). Database, 2022, baac079.
    Cited By
  21. Zhang, Z., Chai, M., Yang, Z., Yang, Z., & Fan, L. (2022). GRAND: an integrated genome, transcriptome resources, and gene network database for gossypium. Frontiers in Plant Science, 13, 773107.
    Cited By
  22. Dong, Y., Hu, G., Grover, C. E., Miller, E. R., Zhu, S., & Wendel, J. F. (2022). Parental legacy versus regulatory innovation in salt stress responsiveness of allopolyploid cotton (Gossypium) species. The Plant Journal, 111(3), 872-887.
    Cited By
  23. Su, X., Zhao, J., Gao, W., Zu, Q., Chen, Q., Li, C., & Qu, Y. (2022). Gb_ANR-47 Enhances the Resistance of Gossypium barbadense to Fusarium oxysporum f. sp. vasinfectum (FOV) by Regulating the Content of Proanthocyanidins. Plants, 11(15), 1902.
    Cited By
  24. Wei, Z., Li, Y., Ali, F., Wang, Y., Liu, J., Yang, Z., ... & Li, F. (2022). Transcriptomic analysis reveals the key role of histone deacetylation via mediating different phytohormone signalings in fiber initiation of cotton. Cell & Bioscience, 12(1), 1-18.
    Cited By
  25. Zhao, L., Sun, L., Guo, L., Lu, X., Malik, W. A., Chen, X., ... & Ye, W. (2022). Systematic analysis of Histidine photosphoto transfer gene family in cotton and functional characterization in response to salt and around tolerance. BMC Plant Biology, 22(1), 548.
    Cited By
  26. Jin, Y., Fan, L., Zhang, Y., Hu, W., Han, X., Yan, Q., ... & Yang, Z. (2022). Functional divergence of GLP genes between G. barbadense and G. hirsutum in response to Verticillium dahliae infection. Genomics, 114(5), 110470.
    Cited By
  27. Arias‐Gaguancela, O., Adhikari, B., Aziz, M., & Chapman, K. D. (2022). Enhanced seedling growth by 3‐n‐pentadecylphenolethanolamide is mediated by fatty acid amide hydrolases in upland cotton (Gossypium hirsutum L.). Plant Direct, 6(7), e421.
    Cited By
  28. Hussain, A., Farooq, M., Naqvi, R. Z., Aslam, M. Q., Siddiqui, H. A., Amin, I., ... & Mansoor, S. (2023). Whole-genome resequencing deciphers new insight into genetic diversity and signatures of resistance in cultivated cotton Gossypium hirsutum. Molecular Biotechnology, 65(1), 34-51.
    Cited By
  29. Zhao, L., Guo, L., Lu, X., Malik, W. A., Zhang, Y., Wang, J., ... & Ye, W. (2022). Structure and character analysis of cotton response regulator genes family reveals that GhRR7 responses to draught stress. Biological Research, 55(1), 27.
    Cited By
  30. Dai, F., Chen, J., Zhang, Z., Liu, F., Li, J., Zhao, T., ... & Fang, L. (2022). COTTONOMICS: a comprehensive cotton multi-omics database. Database, 2022, baac080.
    Cited By
  31. Yadav, U. P., Evers, J. F., Shaikh, M. A., & Ayre, B. G. (2022). Cotton phloem loads from the apoplast using a single member of its nine-member sucrose transporter gene family. Journal of Experimental Botany, 73(3), 848-859.
    Cited By
  32. Fu, X., Yang, Y., Kang, M., Wei, H., Lian, B., Wang, B., ... & Wang, H. (2022). Evolution and stress responses of CLO genes and potential function of the GhCLO06 gene in salt resistance of cotton. Frontiers in Plant Science, 12, 801239.
    Cited By
  33. Hussain, A., Liu, J., Mohan, B., Burhan, A., Nasim, Z., Bano, R., ... & Pajerowska-Mukhtar, K. M. (2022). A genome-wide comparative evolutionary analysis of zinc finger-BED transcription factor genes in land plants. Scientific Reports, 12(1), 12328.
    Cited By
  34. Hu, Z. L., Park, C. A., & Reecy, J. M. (2022). Bringing the Animal QTLdb and CorrDB into the future: Meeting new challenges and providing updated services. Nucleic acids research, 50(D1), D956-D961.
    Cited By
  35. Sharwood, R. E., Quick, W. P., Sargent, D., Estavillo, G. M., Silva-Perez, V., & Furbank, R. T. (2022). Mining for allelic gold: finding genetic variation in photosynthetic traits in crops and wild relatives. Journal of Experimental Botany, 73(10), 3085-3108.
    Cited By
  36. Peng, R., Xu, Y., Tian, S., Unver, T., Liu, Z., Zhou, Z., ... & Liu, F. (2022). Evolutionary divergence of duplicated genomes in newly described allotetraploid cottons. Proceedings of the national academy of sciences, 119(39), e2208496119.
    Cited By
  37.  Ke, L., Yu, D., Zheng, H., Xu, Y., Wu, Y., Jiao, J., ... & Sun, Y. (2022). Function deficiency of GhOMT1 causes anthocyanidins over‐accumulation and diversifies fibre colours in cotton (Gossypium hirsutum). Plant Biotechnology Journal, 20(8), 1546-1560.
    Cited By
  38. Deng, Y., Chen, Q., & Qu, Y. (2022). Protein S-acyl transferase GhPAT27 was associated with Verticillium wilt resistance in cotton. Plants, 11(20), 2758.
    Cited By
  39. Hussain, A., Asif, N., Pirzada, A. R., Noureen, A., Shaukat, J., Burhan, A., ... & Mukhtar, M. S. (2022). Genome wide study of cysteine rich receptor like proteins in Gossypium sp. Scientific Reports, 12(1), 4885.
    Cited By
  40. Huang, C., Li, P., Cao, J., Zheng, Z., Huang, J., Zhang, X., ... & Chen, Z. (2022). Comprehensive identification and expression analysis of CRY gene family in Gossypium. BMC genomics, 23(1), 231.
    Cited By
  41. Huang, L., Yang, S., Wu, L., Xin, Y., Song, J., Wang, L., ... & Hu, S. (2022). Genome-wide analysis of the GW2-like genes in gossypium and functional characterization of the seed size effect of GhGW2-2D. Frontiers in plant science, 13, 860922.
    Cited By
  42. Lei, K., Cheng, J. Q., An, Y., Li, X. S., & An, G. (2022). Organ specific transcriptome analysis of upland cotton (Gossypium hirsutum) in response to low phosphorus stress during early stage of growth. Soil Science and Plant Nutrition, 68(4), 463-472.
    Cited By
  43. Liu, Q., Li, L., Feng, Z., & Yu, S. (2022). Uncovering novel genomic regions and candidate genes for senescence-related traits by genome-wide association studies in upland cotton (gossypium hirsutum L.). Frontiers in Plant Science, 12, 809522.
    Cited By
  44. Grover, C. E., Arick, M. A., Thrash, A., Sharbrough, J., Hu, G., Yuan, D., ... & Wendel, J. F. (2022). Dual domestication, diversity, and differential introgression in old world cotton diploids. Genome Biology and Evolution, 14(12), evac170.
    Cited By
  45. Cui, C., Ma, Z., Wan, H., Gao, J., & Zhou, B. (2022). GhALKBH10 negatively regulates salt tolerance in cotton. Plant Physiology and Biochemistry, 192, 87-100.
    Cited By
  46. Li, T., Wang, F., Yasir, M., Li, K., Qin, Y., Zheng, J., ... & Rong, J. (2022). Expression Patterns Divergence of Reciprocal F1 Hybrids Between Gossypium hirsutum and Gossypium barbadense Reveals Overdominance Mediating Interspecific Biomass Heterosis. Frontiers in Plant Science, 13, 892805.
    Cited By
  47. Mikhailova, A., Strygina, K., & Khlestkina, E. (2022). In silico analysis of the regulatory gene families for proanthocyanidins biosynthesis in the genus Gossypium L. Turkish Journal of Agriculture and Forestry, 46(5), 743-761.
    Cited By
  48. Wang, X., Zhang, X., Fan, D., Gong, J., Li, S., Gao, Y., ... & Yuan, Y. (2022). AAQSP increases mapping resolution of stable QTLs through applying NGS-BSA in multiple genetic backgrounds. Theoretical and Applied Genetics, 135(9), 3223-3235.
    Cited By
  49. Li, J., Zou, X., Chen, G., Meng, Y., Ma, Q., Chen, Q., ... & Li, F. (2022). Potential Roles of 1-Aminocyclopropane-1-carboxylic Acid Synthase Genes in the Response of Gossypium Species to Abiotic Stress by Genome-Wide Identification and Expression Analysis. Plants, 11(11), 1524.
    Cited By
  50. Zhao, L., Li, Y., Li, Y., Chen, W., Yao, J., Fang, S., ... & Zhu, S. (2022). Systematical Characterization of the Cotton Di19 Gene Family and the Role of GhDi19-3 and GhDi19-4 as Two Negative Regulators in Response to Salt Stress. Antioxidants, 11(11), 2225.
    Cited By
  51. Zhou, C., Lin, C., Xing, P., Li, X., & Song, Z. (2022). SmGDB: genome database of Salvia miltiorrhiza, an important TCM Plant. Genes & Genomics, 44(6), 699-707.
    Cited By
  52. Sun, Y., Zhang, D., Zheng, H., Wu, Y., Mei, J., Ke, L., ... & Sun, Y. (2022). Biochemical and expression analyses revealed the involvement of proanthocyanidins and/or their derivatives in fiber pigmentation of Gossypium stocksii. International Journal of Molecular Sciences, 23(2), 1008.
    Cited By
  53. Fang, L., Zhang, Z., Zhao, T., Zhou, N., Mei, H., Huang, X., ... & Zhang, T. (2022). Retrieving a disrupted gene encoding phospholipase A for fibre enhancement in allotetraploid cultivated cotton. Plant Biotechnology Journal, 20(9), 1770-1785.
  54. Guo, J., Cao, P., Yuan, L., Xia, G., Zhang, H., Li, J., & Wang, F. (2022). Revealing the contribution of GbPR10. 5D1 to resistance against Verticillium dahliae and its regulation for structural defense and immune signaling. The Plant Genome, 15(4), e20271.
    Cited By
  55. Wei, Y., Liu, Y., Ali, A. M., Xiao, R., Liang, C., Meng, Z., ... & Zhang, R. (2022). Rich variant phenotype of Gossypium hirsutum L. saturated mutant library provides resources for cotton functional genomics and breeding. Industrial Crops and Products, 186, 115232.
    Cited By
  56. Chen, L., Shen, E., Zhao, Y., Wang, H., Wilson, I., & Zhu, Q. H. (2022). The Conservation of Long Intergenic Non-Coding RNAs and Their Response to Verticillium dahliae Infection in Cotton. International Journal of Molecular Sciences, 23(15), 8594.
    Cited By
  57. Gowda, S. A., Shrestha, N., Harris, T. M., Phillips, A. Z., Fang, H., Sood, S., ... & Kuraparthy, V. (2022). Identification and genomic characterization of major effect bacterial blight resistance locus (BB-13) in Upland cotton (Gossypium hirsutum L.). Theoretical and Applied Genetics, 135(12), 4421-4436.
    Cited By
  58. Jin, S., Han, Z., Hu, Y., Si, Z., Dai, F., He, L., ... & Zhang, T. (2023). Structural variation (SV)-based pan-genome and GWAS reveal the impacts of SVs on the speciation and diversification of allotetraploid cottons. Molecular Plant, 16(4), 678-693.
    Cited By
  59. Wang, Z., Zhang, X., He, S., Rehman, A., Jia, Y., Li, H., ... & Du, X. (2022). Transcriptome co-expression network and metabolome analysis identifies key genes and regulators of proanthocyanidins biosynthesis in brown cotton. Frontiers in plant science, 12, 822198.
    Cited By
  60. Guo, A., Su, Y., Nie, H., Li, B., Ma, X., & Hua, J. (2022). Identification of candidate genes involved in salt stress response at germination and seedling stages by QTL mapping in upland cotton. G3, 12(6), jkac099.
    Cited By
  61. Li, Y., Mo, T., Ran, L., Zeng, J., Wang, C., Liang, A., ... & Xiao, Y. (2022). Genome resequencing-based high-density genetic map and QTL detection for yield and fiber quality traits in diploid Asiatic cotton (Gossypium arboreum). Molecular Genetics and Genomics, 297(1), 199-212.
    Cited By
  62. Lei, J., Li, Y., Dai, P., Liu, C., Zhao, Y., You, Y., ... & Liu, X. (2022). Efficient virus-mediated genome editing in cotton using the CRISPR/Cas9 system. Frontiers in Plant Science, 13, 1032799.
    Cited By
  63. Xing, Aishuang, Xiaoyang Wang, Mian Faisal Nazir, Xiaomeng Zhang, Xiuxiu Wang, Ru Yang, Baojun Chen et al. "Transcriptomic and metabolomic profiling of flavonoid biosynthesis provides novel insights into petals coloration in Asian cotton (Gossypium arboreum L.)." BMC Plant Biology 22, no. 1 (2022): 1-21.
    Cited By
  64. Wang, J., Zhang, Z., Gong, Z., Liang, Y., Ai, X., Sang, Z., ... & Zheng, J. (2022). Analysis of the genetic structure and diversity of upland cotton groups in different planting areas based on SNP markers. Gene, 809, 146042.
    Cited By
  65. Restrepo-Montoya, D., Hulse-Kemp, A. M., Scheffler, J. A., Haigler, C. H., Hinze, L. L., Love, J., ... & Frelichowski, J. (2022). Leveraging National Germplasm Collections to Determine Significantly Associated Categorical Traits in Crops: Upland and Pima Cotton as a Case Study. Frontiers in Plant Science, 13, 837038.
  66. Wei, X., Li, J., Wang, S., Zhao, Y., Duan, H., & Ge, X. (2022). Fiber-specific overexpression of GhACO1 driven by E6 promoter improves cotton fiber quality and yield. Industrial Crops and Products, 185, 115134.
    Cited By
  67. Wang, L., Guo, D., Zhao, G., Wang, J., Zhang, S., Wang, C., & Guo, X. (2022). Group IIc WRKY transcription factors regulate cotton resistance to Fusarium oxysporum by promoting GhMKK2‐mediated flavonoid biosynthesis. New Phytologist, 236(1), 249-265.
    Cited By
  68. Hou, L., Zhu, L., Xue, H., Liu, Z., & Xiao, G. (2022). Three root hair defective genes, GhRHD3-1, GhRHD4-1, and GhRSL4-1, regulate fiber cell elongation in cotton. Industrial Crops and Products, 180, 114751.
    Cited By
  69. Erpelding, J. E. (2022). Genetic analysis of the Asiatic cotton (Gossypium arboreum) petal spot phenotypes. Plant Breeding, 141(1), 71-76.
    Cited By
  70. Feng, L., Su, Q., Yue, H., Wang, L., Gao, J., Xing, L., ... & Zhou, B. (2022). TIP41L, a putative candidate gene conferring both seed size and boll weight, was fine-mapped in an introgression line of Gossypium hirsutum-Gossypium arboreum. Plant Science, 317, 111197.
    Cited By
  71. Kumar, P., Nimbal, S., Budhlakoti, N., Singh, V., & Sangwan, R. S. (2022). Genetic diversity and population structure analysis for morphological traits in upland cotton (Gossypium hirsutum L.). Journal of Applied Genetics, 1-15.
    Cited By
  72. Jin, Y., Li, J., Zhu, Q., Du, X., Liu, F., Li, Y., ... & Xue, F. (2022). GhAPC8 regulates leaf blade angle by modulating multiple hormones in cotton (Gossypium hirsutum L.). International Journal of Biological Macromolecules, 195, 217-228.
    Cited By
  73. Aggarwal, A., Arora, S., Khuman, A., Singh, K., Kumar, V., & Chaudhary, B. (2022). Comparative evolutionary dynamics of the 5’cis-regulatory elements (CREs) of miR167 genes in diploid and allopolyploid cotton species. Plant Gene, 32, 100380.
    Cited By
  74. Zahid, S. M., Farooq, M., Yasmin, M., Aslam, M. Q., Mansoor, S., & Amin, I. (2022). Alternative splicing plays a vital role in regulating pollen allergen (Ole e 1) P19963 protein in Gossypium arboreum. Plant Gene, 31, 100362.
  75. Masoomi‐Aladizgeh, F., Kamath, K. S., Haynes, P. A., & Atwell, B. J. (2022). Genome survey sequencing of wild cotton (Gossypium robinsonii) reveals insights into proteomic responses of pollen to extreme heat. Plant, Cell & Environment, 45(4), 1242-1256.
    Cited By
  76. Zhao, R., Cheng, H., Wang, Q., Lv, L., Zhang, Y., Song, G., & Zuo, D. (2022). Identification of the CesA subfamily and functional analysis of GhMCesA35 in Gossypium hirsutum L. Genes, 13(2), 292.
    Cited By
  77. Mei, L., Zhu, Y., Liu, H., Hui, Y., Xiang, J., Daud, M. K., ... & Zhu, S. (2022). Genome-wide characterization on MT family and their expression in response to environmental cues in upland cotton (Gossypium hirsutum L.). International Journal of Biological Macromolecules, 198, 54-67.
    Cited By
  78. Naoumkina, M., Thyssen, G. N., Fang, D. D., Florane, C. B., & Li, P. (2022). A deletion/duplication in the Ligon lintless-2 locus induces siRNAs that inhibit cotton fiber cell elongation. Plant physiology, 190(3), 1792-1805.
    Cited By
  79. Baytar, A. A., Peynircioğlu, C., Sezener, V., Frary, A., & Doğanlar, S. (2022). Association analysis of germination level cold stress tolerance and candidate gene identification in Upland cotton (Gossypium hirsutum L.). Physiology and Molecular Biology of Plants, 28(5), 1049-1060.
    Cited By
  80. Siddiqui, H. A., Asad, S., Naqvi, R. Z., Asif, M., Liu, C., Liu, X., ... & Mansoor, S. (2022). Development and evaluation of triple gene transgenic cotton lines expressing three genes (Cry1Ac-Cry2Ab-EPSPS) for lepidopteran insect pests and herbicide tolerance. Scientific Reports, 12(1), 18422.
    Cited By
  81. Huang, X., Abuduwaili, N., Wang, X., Tao, M., Wang, X., & Huang, G. (2022). Cotton (Gossypium hirsutum) VIRMA as an N6-methyladenosine RNA methylation regulator participates in controlling chloroplast-dependent and independent leaf development. International Journal of Molecular Sciences, 23(17), 9887.
    Cited by
  82. Bai, S., Niu, Q., Wu, Y., Xu, K., Miao, M., & Mei, J. (2022). Genome-wide identification of the NAC transcription factors in gossypium hirsutum and analysis of their responses to verticillium wilt. Plants, 11(19), 2661.
    Cited By
  83. Shao, D., Liang, Q., Wang, X., Zhu, Q. H., Liu, F., Li, Y., ... & Xue, F. (2022). Comparative metabolome and transcriptome analysis of anthocyanin biosynthesis in white and pink petals of cotton (Gossypium hirsutum L.). International Journal of Molecular Sciences, 23(17), 10137.
    Cited By
  84. Kabir, N., Lin, H., Kong, X., Liu, L., Qanmber, G., Wang, Y., ... & Zhao, N. (2022). Identification, evolutionary analysis and functional diversification of RAV gene family in cotton (G. hirsutum L.). Planta, 255, 1-16.
    Cited By
  85. Dong, Q., Wang, G., Iqbal, A., Muhammad, N., Wang, X., Gui, H., ... & Song, M. (2022). Identification and expression analysis of the NPF genes in cotton. International Journal of Molecular Sciences, 23(22), 14262.
    Cited By
  86. Yan, M., Yu, X., Zhou, G., Sun, D., Hu, Y., Huang, C., ... & Yu, S. (2022). GhCDPK60 positively regulates drought stress tolerance in both transgenic Arabidopsis and cotton by regulating proline content and ROS level. Frontiers in Plant Science, 13, 1072584.
    Cited By
  87. Zhang, L., Liu, J., Cheng, J., Sun, Q., Zhang, Y., Liu, J., ... & Cai, Y. (2022). lncRNA7 and lncRNA2 modulate cell wall defense genes to regulate cotton resistance to Verticillium wilt. Plant Physiology, 189(1), 264-284.
    Cited By
  88. Long, Y., Chen, Q., Qu, Y., Liu, P., Jiao, Y., Cai, Y., ... & Zheng, K. (2022). Identification and functional analysis of PIN family genes in Gossypium barbadense. PeerJ, 10, e14236.
    Cited By
  89. Wang, G., Yue, X., Feng, Z., Cai, L., Li, N., Geng, F., ... & Fahad, S. (2022). Identification of AtSND1 homologous NAC genes related to cotton fiber development, in silico analyses, and gene expression patterns. Food and Energy Security, 11(3), e407.
    Cited By
  90. Zhang, D., Li, J., Li, M., Cheng, Z., Song, X., Shang, X., & Guo, W. (2022). Overexpression of a cotton nonspecific lipid transfer protein gene, GhLTP4, enhances drought tolerance by remodeling lipid profiles, regulating abscisic acid homeostasis and improving tricarboxylic acid cycle in cotton. Environmental and Experimental Botany, 201, 104991.
    Cited By
  91. Liu, Y., Wang, L., Li, X., & Luo, M. (2022). Detailed sphingolipid profile responded to salt stress in cotton root and the GhIPCS1 is involved in the regulation of plant salt tolerance. Plant Science, 316, 111174.
    Cited By
  92. Guo, Y., Chen, F., Luo, J., Qiao, M., Zeng, W., Li, J., & Xu, W. (2022). The DUF288 domain containing proteins GhSTLs participate in cotton fiber cellulose synthesis and impact on fiber elongation. Plant Science, 316, 111168.
    Cited By
  93. Wei, X., Geng, M., Li, J., Duan, H., Li, F., & Ge, X. (2022). GhWOX11 and GhWOX12 promote cell fate specification during embryogenesis. Industrial Crops and Products, 184, 115031.
    Cited By
  94. Chandnani, R., Kim, C., Patel, J. D., Guo, H., Shehzad, T., Wallace, J. G., ... & Paterson, A. H. (2022). Identification of small effect quantitative trait loci of plant architectural, flowering, and early maturity traits in reciprocal interspecific introgression population in cotton. Frontiers in Plant Science, 13, 981682.
    Cited By
  95. Yu, D., Li, X., Li, Y., Ali, F., Li, F., & Wang, Z. (2022). Dynamic roles and intricate mechanisms of ethylene in epidermal hair development in Arabidopsis and cotton. New Phytologist, 234(2), 375-391.
    Cited By
  96. Mei, J., Wu, Y., Niu, Q., Miao, M., Zhang, D., Zhao, Y., ... & Sun, Y. (2022). Integrative analysis of expression profiles of mRNA and MicroRNA provides insights of cotton response to Verticillium dahliae. International Journal of Molecular Sciences, 23(9), 4702.
    Cited By
  97. Iqbal, A., Huiping, G., Xiangru, W., Hengheng, Z., Xiling, Z., & Meizhen, S. (2022). Genome-wide expression analysis reveals involvement of asparagine synthetase family in cotton development and nitrogen metabolism. BMC Plant Biology, 22(1), 122.
    Cited By
  98. Wang, Y., Zhao, J., Deng, X., Wang, P., Geng, S., Gao, W., ... & Qu, Y. (2022). Genome-wide analysis of serine carboxypeptidase-like protein (SCPL) family and functional validation of Gh_SCPL42 unchromosome conferring cotton Verticillium der Verticillium wilt stress in Gossypium hirsutum. BMC Plant Biology, 22(1), 1-13.
    Cited By
  99. Ma, L., & Yan, Y. (2022). GhSOC1s evolve to respond differently to the environmental cues and promote flowering in partially independent ways. Frontiers in Plant Science, 13, 882946.
    Cited By
  100. Perez, L. M., Mauleon, R., Arick, M. A., Magbanua, Z. V., Peterson, D. G., Dean, J. F., & Tseng, T. M. (2022). Transcriptome analysis of the 2, 4-dichlorophenoxyacetic acid (2, 4-D)-tolerant cotton chromosome substitution line CS-B15sh and its susceptible parental lines G. hirsutum L. cv. Texas Marker-1 and G. barbadense L. cv. Pima 379. Frontiers in Plant Science, 13, 910369.
    Cited By
  101. Wang, Z., Li, Y., Zhu, Q., Tian, L., Liu, F., Zhang, X., & Sun, J. (2022). Transcriptome profiling provides new insights into the molecular mechanism underlying the sensitivity of cotton varieties to Mepiquat chloride. International journal of molecular sciences, 23(9), 5043.
    Cited By
  102. Wei, Y., Li, Z., Wedegaertner, T. C., Jaconis, S., Wan, S., Zhao, Z., ... & Zhang, B. (2022). Conservation and divergence of phosphoenolpyruvate carboxylase gene family in cotton. Plants, 11(11), 1482.
    Cited By
  103. Li, H., Zhang, S., Zhao, Y., Zhao, X., Xie, W., Guo, Y., ... & Miao, Y. (2022). Identification and characterization of cinnamyl alcohol dehydrogenase encoding genes involved in lignin biosynthesis and resistance to Verticillium dahliae in upland cotton (Gossypium hirsutum L.). Frontiers in Plant Science, 13, 840397.
    Cited By
  104. Zhang, X., Ren, Z., Hu, G., Zhao, S., Wei, H., Fan, S., & Ma, Q. (2022). Functional divergence of GhAP1. 1 and GhFUL2 associated with flowering regulation in upland cotton (Gossypium hirsutum L.). Journal of Plant Physiology, 275, 153757.
  105. Shishehbor, P., & Hemmati, S. A. (2022). Investigation of secondary metabolites in bean cultivars and their impact on the nutritional performance of Spodoptera littoralis (Lep.: Noctuidae). Bulletin of Entomological Research, 112(3), 378-388.
    Cited By
  106. Xu, Z., Chen, J., Meng, S., Xu, P., Zhai, C., Huang, F., ... & Shen, X. (2022). Genome sequence of Gossypium anomalum facilitates interspecific introgression breeding. Plant Communications, 3(5).
    Cited By
  107. Chen, E., Yang, X., Liu, R., Zhang, M., Zhang, M., Zhou, F., ... & Li, C. (2022). GhBEE3-Like gene regulated by brassinosteroids is involved in cotton drought tolerance. Frontiers in Plant Science, 13, 1019146.
    Cited By
  108. Billings, G. T., Jones, M. A., Rustgi, S., Bridges Jr, W. C., Holland, J. B., Hulse-Kemp, A. M., & Campbell, B. T. (2022). Outlook for implementation of genomics-based selection in public cotton breeding programs. Plants, 11(11), 1446.
    Cited By
  109. Zafar, M. M., Rehman, A., Razzaq, A., Parvaiz, A., Mustafa, G., Sharif, F., ... & Ren, M. (2022). Genome-wide characterization and expression analysis of Erf gene family in cotton. BMC plant biology, 22(1), 134.
    Cited By
  110. Guo, A., Hao, J., Su, Y., Li, B., Zhao, N., Zhu, M., ... & Hua, J. (2022). Two aquaporin genes, GhPIP2; 7 and GhTIP2; 1, positively regulate the tolerance of upland cotton to salt and osmotic stresses. Frontiers in Plant Science, 12, 780486.
    Cited By
  111. Xing, L., Peng, K., Xue, S., Yuan, W., Zhu, B., Zhao, P., ... & Liu, Z. (2022). Genome-wide analysis of zinc finger-homeodomain (ZF-HD) transcription factors in diploid and tetraploid cotton. Functional & Integrative Genomics, 22(6), 1269-1281.
    Cited By
  112. de Moura, S. M., Freitas, E. O., Ribeiro, T. P., Paes-de-Melo, B., Arraes, F. B., Macedo, L. L. P., ... & Grossi-de-Sa, M. F. (2022). Discovery and functional characterization of novel cotton promoters with potential application to pest control. Plant Cell Reports, 41(7), 1589-1601.
    Cited By
  113. Lu, Z., Yin, G., Chai, M., Sun, L., Wei, H., Chen, J., ... & Li, S. (2022). Systematic analysis of CNGCs in cotton and the positive role of GhCNGC32 and GhCNGC35 in salt tolerance. BMC genomics, 23(1), 560.
    Cited By
  114. Abdelraheem, A., Zhu, Y., & Zhang, J. (2022). Quantitative trait locus mapping for fusarium wilt race 4 resistance in a recombinant inbred line population of Pima cotton (Gossypium barbadense). Pathogens, 11(10), 1143.
    Cited By
  115. Jia, M. Z., Li, Z. F., Han, S., Wang, S., & Jiang, J. (2022). Effect of 1-aminocyclopropane-1-carboxylic acid accumulation on Verticillium dahliae infection of upland cotton. BMC Plant Biology, 22(1), 1-12.
    Cited By
  116. Cui, Z., Liu, S., Ge, C., Shen, Q., Zhang, S., Ma, H., ... & Chen, J. (2022). Genome-wide association study reveals that GhTRL1 and GhPIN8 affect cotton root development. Theoretical and Applied Genetics, 135(9), 3161-3176.
    Cited By
  117. Han, J., Lopez-Arredondo, D., Yu, G., Wang, Y., Wang, B., Wall, S. B., ... & Wang, K. (2022). Genome-wide chromatin accessibility analysis unveils open chromatin convergent evolution during polyploidization in cotton. Proceedings of the National Academy of Sciences, 119(44), e2209743119.
    Cited By
  118. Li, Y., Nie, T., Zhang, M., Zhang, X., Shahzad, K., Guo, L., ... & Xing, C. (2022). Integrated analysis of small RNA, transcriptome and degradome sequencing reveals that micro-RNAs regulate anther development in CMS cotton. Industrial Crops and Products, 176, 114422.
    Cited By
  119. Li, W., Mi, X., Jin, X., Zhang, D., Zhu, G., Shang, X., ... & Guo, W. (2022). Thiamine functions as a key activator for modulating plant health and broad‐spectrum tolerance in cotton. The Plant Journal, 111(2), 374-390.
    Cited By
  120. Wang, H., Zhou, X., Liu, C., Li, W., & Guo, W. (2022). Suppression of GhGLU19 encoding β-1, 3-glucanase promotes seed germination in cotton. BMC Plant Biology, 22(1), 357.
    Cited By
  121. Zhang, L., Azhar, M. T., Che, J., & Shang, H. (2022). Genome-wide identification, expression and evolution analysis of OVATE family proteins in cotton (Gossypium spp.). Gene, 834, 146653.
    Cited By
  122. Zhang, R., Dong, Q., Zhao, P., Eickelkamp, A., Ma, C., He, G., ... & Tian, X. (2022). The potassium channel GhAKT2bD is regulated by CBL–CIPK calcium signalling complexes and facilitates K+ allocation in cotton. FEBS letters, 596(15), 1904-1920.
    Cited By
  123. Wang, H., Umer, M. J., Liu, F., Cai, X., Zheng, J., Xu, Y., ... & Zhou, Z. (2022). Genome-wide identification and characterization of CPR5 genes in gossypium reveals their potential role in trichome development. Frontiers in Genetics, 13, 921096.
    Cited By
  124. Sadat, M. A., Ullah, M. W., Hossain, M. S., Ahmed, B., & Bashar, K. K. (2022). Genome-wide in silico identification of phospholipase D (PLD) gene family from Corchorus capsularis and Corchorus olitorius: reveals their responses to plant stress. Journal of Genetic Engineering and Biotechnology, 20(1), 28.
    Cited By
  125. Zhao, J., Peng, S., Cui, H., Li, P., Li, T., Liu, L., ... & Xu, R. (2022). Dynamic expression, differential regulation and functional diversity of the CNGC family genes in cotton. International Journal of Molecular Sciences, 23(4), 2041.
    Cited By
  126. An, M., Hong, D., Chang, D., Zhang, C., Fan, H., & Wang, K. (2022). Polymer amendment regulates cadmium migration in cadmium contaminated cotton field: Insights from genetic adaptation and phenotypic plasticity. Science of The Total Environment, 807, 151075.
    Cited By
  127. Kabir, N., Zhang, X., Liu, L., Qanmber, G., Zhang, L., Wang, Y. X., ... & Wang, G. (2022). RAD gene family analysis in cotton provides some key genes for flowering and stress tolerance in upland cotton G. hirsutum. BMC genomics, 23, 1-14.
    Cited By
  128. Dou, L., Li, Z., Wang, H., Li, H., Xiao, G., & Zhang, X. (2022). The hexokinase gene family in cotton: Genome-wide characterization and bioinformatics analysis. Frontiers in Plant Science, 13, 882587.
    Cited By
  129. Darmanov, M. M., Makamov, A. K., Ayubov, M. S., Khusenov, N. N., Buriev, Z. T., Shermatov, S. E., ... & Abdurakhmonov, I. Y. (2022). Development of superior fibre quality upland cotton cultivar series ‘Ravnaq’using marker-assisted selection. Frontiers in Plant Science, 13, 906472.
    Cited By
  130. Shi, G., Wang, S., Wang, P., Zhan, J., Tang, Y., Zhao, G., ... & Wu, J. (2022). Cotton miR393-TIR1 module regulates plant defense against verticillium dahliae via auxin perception and signaling. Frontiers in Plant Science, 13, 888703.
    Cited By
  131. Fan, Y., Tang, Z., Wei, J., Yu, X., Guo, H., Li, T., ... & Zeng, F. (2022). Dynamic transcriptome analysis reveals complex regulatory pathway underlying induction and dose effect by different exogenous auxin IAA and 2, 4-D during in vitro embryogenic redifferentiation in cotton. Frontiers in Plant Science, 13, 931105.
    Cited By
  132. Feng, J., Li, Y., Zhang, J., Zhang, M., Zhang, X., Shahzad, K., ... & Wu, J. (2022). Transcript Complexity and New Insights of Restorer Line in CMS-D8 Cotton Through Full-Length Transcriptomic Analysis. Frontiers in Plant Science, 13, 930131.
    Cited By
  133. Liu, B., Sun, Y., Wang, X., Xue, J., Wang, J., Jia, X., & Li, R. (2022). Identification and Functional Characterization of Acyl-ACP Thioesterases B (GhFatBs) Responsible for Palmitic Acid Accumulation in Cotton Seeds. International Journal of Molecular Sciences, 23(21), 12805.
    Cited By
  134. Ojeda-Rivera, J. O., Ulloa, M., Roberts, P. A., Kottapalli, P., Wang, C., Nájera-González, H. R., ... & Herrera-Estrella, L. (2022). Root-knot nematode resistance in Gossypium hirsutum determined by a constitutive defense-response transcriptional program avoiding a fitness penalty. Frontiers in Plant Science, 13, 858313.
    Cited By
  135. Zhang, J., Gao, Y., Feng, M., Cui, Y., Li, S., Liu, L., ... & Li, F. (2022). Genome-wide identification of the HD-ZIP III subfamily in upland cotton reveals the involvement of GhHB8-5D in the biosynthesis of secondary wall in fiber and drought resistance. Frontiers in Plant Science, 12, 806195.
    Cited By
  136. Sanamyan, M. F., Bobohujayev, S. U., Abdukarimov, S. S., Makamov, A. K., & Silkova, O. G. (2022). Features of Chromosome Introgression from Gossypium barbadense L. into G. hirsutum L. during the Development of Alien Substitution Lines. Plants, 11(4), 542.
    Cited By
  137. Yan, C., Jia, K., Zhang, J., Xiao, Z., Sha, X., Gao, J., & Yan, H. (2022). Genome-wide identification and expression pattern analysis of lipoxygenase gene family in turnip (Brassica rapa L. subsp. rapa). PeerJ, 10, e13746.
    Cited By
  138. Mu, H., Wang, B., & Yuan, F. (2022). Bioinformatics in Plant Breeding and Research on Disease Resistance. Plants, 11(22), 3118.
    Cited By